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ABSTRACT 
 
Wang, C.G., Zhou, Y.J., He, X.J., Huang, X.Y. and Lu, F., 2022. Full-waveform 
inversion based on deep learning and the temporal modified and spatial optimized 
symplectic partitioned Runge-Kutta method. Journal of Seismic Exploration, 31: 501-
521. 
 
 This study uses deep learning techniques to propose a full-waveform inversion 
(FWI) method. This method uses the Temporal Modified and Spatial Optimized 
Symplectic Partitioned Runge-Kutta (TMSOS) method, for the forward modeling in the 
FWI process. Additionally, optimizer, loss function in deep learning are utilized to 
perform FWI. We used recurrent neural networks in deep learning to implement the 
forwarding modeling method–TMSOS. This method uses the second-order MSPRK 
scheme and an eighth-order optimized finite difference scheme for temporal and spatial 
discretization, respectively, to obtain high precision with lesser computational effort. The 
Nadam optimizer, packaged in the Tensorflow software, is used to optimize the model 
parameters in this study. Additionally, Huber loss is used as the objective function of 
FWI. Several numerical simulations were done to verify the effectiveness of the 
proposed method. First, the effectiveness of the TMSOS forward modeling method was 
compared with the finite difference (FD) method. Then FWI was performed using the 
TMSOS forward modeling method for the velocity anomaly model, the third-order 
model, and the complex Sigsbee velocity model. Finally, the inversion results under the 
three loss functions were compared. The numerical results suggest that the TMSOS 
forward modeling method has better computational efficiency and smaller resultant 
numerical dispersion than the traditional FD method. The inversion results of the 
TMSOS method are closer to those of the actual model, with a better inversion effect. 
Additionally, the Huber loss function has better stability in selecting the learning rate. 
 
KEY WORDS: TMSOS method, RNN, Nadam optimizer, inversion, Huber loss. 
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INTRODUCTION 
 
 Oil and gas are a country's lifelines and guarantee its people's 
livelihood. Oil is processed and refined to obtain essential derivatives, 
including gasoline, kerosene, diesel, paraffin, and asphalt. Even though 
vehicles fueled by new energy sources are gaining popularity, the 
importance of oil remains the same. The demand for natural gas, a clean 
energy source, is also expected to grow in the future since it can meet the 
growing energy demands and reduce carbon dioxide emissions. Seismic 
inversion is a core technology in oil and gas exploration. It is the process of 
inferring spatial structures and physical properties of subsurface rock 
formations from available data such as seismic and well log data. However, 
due to the high temperature and pressure characteristics of the Earth's 
interior, the deepest interior distance currently explored by humans is only 
12 km. Compared with the radius of the Earth, which is approximately 6371 
km, human exploration of the Earth's interior is far from over. 
 
 The current developments in signal processing, imaging theory, and 
practical aspects of oil and gas-related seismic exploration have contributed 
significantly to the study of inversion problems in seismic exploration. 
Additionally, the development of science and technology has attracted 
significant attention to the inversion problems (Wang, 2007). Full-
waveform inversion (FWI), which is one of the mainstream geophysical 
exploration methods, uses waveform data and wave equations observed at 
the surface to infer the structure of the subsurface medium. FWI requires 
constructing a high-precision and high-efficiency method for numerical 
computation of the wave equations. The algorithms for computing the wave 
equations include spatial discretization, temporal discretization, and 
boundary condition handling (Carcione et al., 2002). 
 
 Among the reported methods that involve the solutions of the wave 
equations and wave field modeling, the more commonly used numerical 
simulation methods include the finite element method (Hrennikoff, 1941), 
reflectivity method (Booth and Crampin, 1983; Hanyga, 1986; Fuchs and 
Müller, 2010), finite difference method (Virieux, 1984, 1986; Dablain, 
1986; Igel, 1995; Mora et al., 1995; Wang et al., 2002; Blanch and 
Robertsson, 2010), spectral element method (Komatitsch et al., 2000), 
discontinuous finite element method (Rivière and Wheeler, 2003; Michael 
and Martin, 2006; He et al., 2015), and staggered mesh format (Madariaga, 
1976). Each of these methods has its specific advantages and disadvantages. 
For example, the current finite difference method, widely used in the 
numerical simulation of seismic waves, is based on a regular grid in the 
Cartesian coordinate system. Therefore, curved boundaries are bound to 
appear in numerical simulations of complex geological structure interfaces, 
and artificial spurious diffracted waves (i.e., numerical dispersion) are 
present on such boundaries. If a finer grid is used, it leads to increased 
storage, computational effort, and error accumulation. Furthermore, the 
numerical dispersion is large, and it adversely affects the information in 
forward modeling, which reduces the accuracy and resolution of the 
wavefield modeling. In particular, the correct waveform information is 
almost indistinguishable after a long-time simulation. Therefore, numerical 
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dispersion must be minimized in numerical computation. Additionally, 
numerical dispersion can be reduced by encrypting the grid and improving 
the accuracy of the numerical format. However, these measures significantly 
increase computational effort and storage capacity demand. Therefore, 
developing high-precision numerical simulation methods to reduce 
numerical dispersion is a fundamental research concern. 
 
 The nearly analytical discretization method (NADM) (Yang, 2004; 
Teng et al., 2003; Lang, 2017), which was applied to solve the two-
dimensional acoustic and elastic wave equations, uses a temporal truncated 
Taylor expansion to characterize wave displacements and first-order partial 
derivatives, and a spatial truncated Taylor expansion to construct higher-
order interpolation functions to approximate higher-order spatial partial 
derivatives (Yang, 2004; Teng et al., 2003). NADM effectively reduces 
numerical dispersion with high accuracy since it compensates for the 
higher-order seismic information due to the discrete characterization of 
seismic displacements. However, this method requires a large amount of 
storage capacity. Consequently, NADM was optimized, and an optimum 
nearly analytical discretization method (ONADM) for two-dimensional 
cases was obtained (Yang et al., 2003, 2006; Peng et al., 2006). This 
optimization improves the computational accuracy, efficiency, and 
resolution of NADM significantly and saves about 53% of the storage 
volume. Based on this, a new symplectic partitioned Runge-Kutta (NSPRK) 
method was proposed (Ma et al., 2011). NSPRK method transforms the 
elastic wave equation into a Hamiltonian system and approximates the 
higher-order spatial differential operator using a nearly analytic discrete 
operator. NSPRK can effectively suppress the numerical dispersion caused 
by the discretization of the wave equations and preserves the symplectic 
structure for long-time simulation. Additionally, an eighth-order spatial 
model method, which has eighth-order precision in spatial discretization and 
can suppress numerical dispersion well was proposed. Liu et al. (2016) 
proposed an optimized strategy to construct a time-exceeding symplectic 
structure and used the classical symplectic partitioned Runge-Kutta (SPRK) 
method for time discretization. Additionally, they introduced a spatial 
difference term to SPRK to form a modified symplectic partitioned Runge-
Kutta (MSPRK) method, which is a modified time-advanced symplectic 
method with all positive symplectic coefficients. MSPRK method (Liu et 
al., 2016, 2017), which uses the conventional second-order partitioned 
Runge–Kutta (PRK) format, attains the SPRK format with third-order 
precision after the spatial difference term is introduced. Consequently, high 
precision is achieved with lesser computational effort. 
 
 In this study, the time-advanced format of the MSPRK method is 
analyzed. In terms of spatial discretization, an eighth-order optimized finite-
difference format is used to approximate the higher-order spatial derivatives 
included in the wave equation (Zhang and Yao, 2013). MSPRK method 
takes an infinite norm of the absolute error between the analytic and 
numerical wave numbers as the objective function of an optimization 
problem and solves this optimization problem using the simulated annealing 
algorithm (Kirkpatrick et al., 1983; Sen and Stoffa, 2013). Subsequently, the 
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absolute error between the analytic and numerical wave numbers of the 
obtained optimization coefficients corresponding to the finite difference 
format is smaller than the absolute error of the classical finite difference 
format. Thus, an efficient forward modeling method is developed. 
 

 FWI can be implemented in the time, frequency, and hybrid domains. 
Generally, after obtaining the gradients of a model by the adjoint state 
method, the model is continuously updated using optimization algorithms 
such as linear search or trust domain. Therefore, mathematically 
interpreting, FWI is a nonlinear optimization problem. Additionally, 
selecting an optimization algorithm is crucial in solving an optimization 
problem. Currently, the most widely used optimization algorithms for FWI 
include the Fortan Subroutines for Large-Scale Bound-Constrained 
Optimization (L-BFGS-B) method (Zhu, 1997; Byrd et al., 1997; Rao and 
Wang, 2017), which is based primarily on the gradient information of the 
model, the steepest descent method, and the conjugate gradient method. 
These algorithms are relatively simple to implement and interpret, and the 
results achieved in parametric model inversion are satisfactory. 

 
 The advancement of artificial intelligence has led to the maturation of 

the theory and algorithms of artificial neural networks, which find 
applications in many fields, especially in computer vision and natural 
language processing. Deep learning is a machine learning algorithm for 
training deep neural networks. The recurrent neural network (RNN) is 
mainly used to process sequential data. Compared to traditional neural 
network models, RNN model layers are not fully connected to each other. 
Therefore, RNN memorizes the information before the current moment and 
applies it to compute the current output. Thus, the RNN characteristics like 
memorability and parameter sharing are used to solve sequential input 
problems. Due to extensive research on RNN, many network models have 
been proposed to solve the problem of long-time dependency of sequences. 
Additionally, the deep learning algorithm uses back propagation and 
automatic differentiation to update network parameters by computing loss 
functions. 

 
 In this study, first, we introduce TMSOS for solving acoustic 

waveform equations as the forward modeling method for FWI. TMSOS 
method effectively suppresses numerical dispersion under the coarse spatial 
grid condition and can achieve higher-order precision with lesser 
computational effort. Then, with respect to the deep learning strategy, we 
select an RNN framework to characterize the temporal iterative format of 
the TMSOS method. Additionally, based on the Tensorflow framework, we 
use the Nadam optimizer (Dozat, 2016), small-batch strategy, and automatic 
differentiation to improve the precision and computational efficiency of the 
inversion. Finally, we use numerical simulations to validate the 
effectiveness of the TMSOS method. 
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TMSOS 
 
TMSOS for solving a two-dimensional acoustic equation 
 
 In a two-dimensional homogeneous isotropic medium, the acoustic 
wave equation can be written as: 
 

         
2 2 2

2
2 2 2

u u uc
t x z

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠     

 ,                                             (1) 

 
where c , u , and t  denote velocity of the acoustic wave propagating in the 

medium, displacement, and time, respectively. The variable 
uv
t
∂

=
∂

, where v  

denotes the velocity, is introduced to rewrite eq. (1) in the form of a 
Hamiltonian system (Ma et al., 2011). Then the two-dimensional acoustic 
wave equation can be rewritten in the form of a Hamiltonian system as: 
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 is the spatial operator of the acoustic wave 

equation and is a linear function with respect to u . Thus, System (2) is a 
linearly differentiable Hamiltonian system of the two-dimensional acoustic 
wave equation with Hamiltonian function, ( ) ( )2 21,

2
TH u v v c u udσ

Ω
= + ∇ ∇∫ . 

Then, we define the generalized displacement vector, 
( ), / , / TU u u x u z= ∂ ∂ ∂ ∂  and the particle velocity vector, 

( ), / , / TV v v x v z= ∂ ∂ ∂ ∂ . Thus, eq. (2) can be written in the following 
form: 

    ,
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                                                                                    (3) 

 
      We discretize the temporal iteration format using the MSPRK format 

to solve eq. (3) (Liu et al., 2017). First, we derive the traditional third-order 
SPRK format. 
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According to the theoretical analyses and experimental results, the third-

order SPRK format shown in eq. (4) is better than the second-order SPRK 
format obtained by different optimization approaches. However, the third-
order format requires extensive computation compared to second-order 
format. Therefore, Liu et al. proposed that a term 1vL  can be added to the 
third equation in the second-order SPRK format to improve its precision 
(Liu et al., 2016, 2017; Yang et al., 2016, 2017). Thus, the MSPRK format 
can be written as: 
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where tΔ , L , and ( ) ( )1,2,3 , 1,2i jc i d j= =  are time increment, finite 
difference operator of the eighth-order optimization, and system coefficients 
of MSPRK, respectively. Detailed information about the system coefficients 
of MSPRK and the optimized finite difference method is given in the 
Appendix. 
 
 
 
WRITTEN INTO RNN FRAMEWORK VIA TMSOS 
 
 An RNN consists of an input layer, a hidden layer, and an output 
layer. The output layer contains a classifier and a label. The classifier, 
also called the Softmax layer, classifies and estimates the output in the 
hidden layer and selects the one with the highest probability as the label. 
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 RNN remembers the previous information and applies it to the 
current output calculation. Therefore, an important characteristic of the 
RNN is that the current output of a sequence is related to the previous 
output. The hidden layers are connected to each other, and their inputs 
contain not only the output of the input layer but also the output of the 
hidden layer at the previous moment. RNN is used to solve sequential 
input problems due to its memorability and parameter-sharing 
characteristics. The intensive research on RNN has led to more and more 
network models being proposed to solve the long-time dependence 
problem of sequences. Fig. 1 shows the schematic diagram of RNN. 

 

 
 
Fig. 1. Schematic diagram of RNN, where x is the input sample, s is the hidden layer, 
o is the output, W is the weight of the input, U is the weight of the input sample, and 
V is the weight of the output (Elman, 1990). 

 

 

     RNN works similar to most traditional forward modeling methods, 
which use the previous moment’s wavefield to calculate the current 
moment’s wavefield. Therefore, we present a traditional forward modeling 
method with an RNN framework. RNN framework and the convolution 
kernel can simplify the writing of the program, since the RNN framework 
can make the programming of the temporal iterative format faster, and the 
convolution kernel can write the higher-order derivatives easily. 
Additionally, the RNN can combine the forward modeling method with 
deep learning techniques. Consequently, high-precision numerical 
algorithms can be used to solve the forward modeling problem, and deep 
learning techniques, including optimizers and small-batch training 
strategies, can be used to solve the inversion problem. Additionally, parallel 
computation can also be performed on a distributed storage-based computer 
cluster to improve computational efficiency. Fig. 2 shows the schematic 
diagram of the RNN combined with the TMSOS method (RNN–TMSOS). 
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Fig. 2. Schematic diagram of RNN–TMSOS forward modeling method. 

 

LOSS FUNCTION AND OPTIMIZER SELECTION 
 
 Inversion is essentially an optimization problem to minimize the error 
between real-world and synthetic data. The real-world data is the waveform 
information of the seismic wave received by a geophone. In contrast, the 
synthetic data is the simulated waveform information obtained from the 
current velocity model. 
 
 We often refer to the minimization function as the loss function, 
which mainly measures the predictive power of machine learning models. 
The gradient descent algorithm is the most common method for finding the 
minimization function. Although a loss function identifies the strengths and 
weaknesses of a model and provides directions for optimization, no single 
loss function is applicable to all models. The selection of the loss function 
depends on several factors such as the number of parameters, outliers, 
machine learning algorithms, the efficiency of the gradient descent 
algorithm, and the difficulty level in derivation. Commonly used regression 
loss functions include 2L MSE (loss function) and 1L  MAE (loss function). 
The MSE is the quadratic sum of the differences between the predicted and 
the target values. The MAE is the sum of the absolute values of the 
difference value between the target and the predicted values, which 
characterizes the average error margin in the predicted value without 
considering the direction of the error. The equations for the MSE and the 
MAE loss functions are written as: 
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where iy  is the real-world value and p

iy  is the predicted value. 
 
 The MSE and the MAE have their limitations. The MSE shows a 

much more significant loss at larger error points than the MAE. 
Additionally, the MSE assigns more weight to the outliers, which decreases 
the model’s overall performance since it will try to reduce the error caused 
by the outliers. In contrast, the MAE is more stable in handling outliers. 
However, the gradient of the MAE undergoes a large jump at the extremes, 
especially for neural networks, which can be detrimental to the learning 
process since even small loss values can produce large errors. The learning 
rate needs to be dynamically reduced during the resolution of the extrema to 
solve this problem. The MSE has good properties at the extrema and 
converges even at a fixed learning rate. Its gradient decreases as the loss 
function decreases, making it possible to obtain more accurate results in the 
final training process. 

 
 In this study, the Huber loss is used to reduce the effect of the other 

loss functions on the inversion results. The Huber loss is less sensitive to 
outliers than the MSE loss. However, the Huber loss retains the property of 
derivability compared to the MAE loss. Therefore, the Huber loss has the 
advantages of reducing the sensitivity to outliers and avoiding model 
overfitting to a certain extent. Additionally, it achieves derivability 
everywhere, ensuring the stability of the model at extreme points (Ma, 2020; 
Li et al., 2020). Although the Huber loss is based on the MAE, it is turned 
into the MSE when the error is small. Additionally, the hyper-parameter δ 
can be used to adjust the threshold of this error. The Huber loss degenerates 
to the MAE when δ tends to 0 and to the MSE when δ tends to infinity. The 
expression for the Huber loss, which is a continuously differentiable 
piecewise function, is written as: 

 

  

2

2 2

1 ( ) ,2( , )
1 .
2

p
p

p
y y for y y

L y y
otherwisey y

δ

δ

δ δ

⎧ −⎪ − ≤⎪
= ⎨
⎪ − −
⎪⎩

  .                               (8) 

 
 The hyper-parameter δ is chosen based on the predicted and real-
world values. Finally, in numerical computation, experiments demonstrate 
the stability and effectiveness of the Huber loss in inversion. 
 

 A small-batch training strategy is used to train the model once instead 
of training all sample data. The optimizer used is the Nadam optimizer 
packaged in the Tensorflow software, which integrates ideas from the 
Nesterov momentum and Adam optimizer. Several published experiments 
suggest that the Nadam optimizer is more effective and provides better 



 
 510 

guidance for gradient descent than the Adam optimizer (Dozat et al., 2016; 
Zeyer et al., 2017). Hyper-parameters such as learning rate and small-batch 
size of the RNN have no standard selection method in this study. The choice 
of these hyper-parameters depends on the specific situation and model 
setting. 
 
 
NUMERICAL SIMULATION 
 
 Numerical simulations are used to test the effectiveness of the 
TMSOS method. First, a homogeneous model and a corner–edge model are 
constructed to test the effectiveness of the method on forward modeling. 
Subsequently, a velocity anomaly model is constructed to perform FWI. 
Additionally, the effect of the learning rate on the experimental results is 
tested. Finally, the TMSOS method's effectiveness for complex model-
based inversion is tested with the Sigsbee model. 
 
 
Forward modeling of the homogeneous model 
 
 As shown in Fig. 3(a), the effectiveness of the TMSOS–RNN forward 
modeling is tested and compared with the conventional FD–RNN forward 
modeling. The area of the homogeneous model is set to 6.0 km × 6.0 km, 
with xΔ  = zΔ  = 40 m as spatial step, tΔ  = 0.001 s as temporal step, and 
5000 m/s velocity. The hypocenter frequency, which is located at the center 
of the computational domain, is 20 Hz.   The receiver setting is 1R  (3.0 km, 
0 km). Finally, the boundary conditions are absorbed using the perfect 
matching layer (PML). 
 
 We compare the forward modeling results between TMSOS-RNN 
and FD-RNN. The wavefield snapshots of TMSOS and FD at T = 0.5 s are 
shown in Figs. 3(b) and 3(c), respectively. The waveforms in Fig. 3(b) are 
clearer with no obvious numerical dispersion. However, the waveform in 
Fig. 3(c) shows an obvious numerical dispersion. 
 

 
Fig. 3. The area of the homogeneous model in Fig. 3 (a). Wavefield Snapshot of TMSOS 
and FD at T = 0.5 under coarse mesh are shown in Figs. 3(b) and 3(c). 
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 The Courant number is fixed, and the spatial mesh is refined to 
eliminate the numerical dispersion derived from the FD method. Successful 
mesh refinement is defined as the presence of visible numerical dispersion. 
The spatial step in the FD method is 30 m. Fig. 4 shows the wavefield 
snapshot of the FD method at T = 0.5 s under the fine mesh. At this point, 
the FD method yields few visible numerical dispersion. However, the 
computation time consumed by the two methods in achieving dispersion 
elimination is different. The TMSOS method takes about 2.734 s, whereas 
the FD method under the fine mesh takes about 4.121 s to achieve 
dispersion elimination. Therefore, the TMSOS method is superior to the FD 
method in computation time. The spatial step, number of mesh points, and 
computation time of the two methods are shown in Table 1. 
 

 

 
 
Fig. 4. Wavefield snapshot of FD at T = 0.5 s under fine mesh condition. 
 
 
Table 1. Spatial step, number of mesh points, and computation time of the TMSOS and 
FD methods. 
 
 Spatial step (m) Number of mesh points Computation time (s) 

TMSOS 40 150×150 2.734 

FD 30 200×200 4.121 

 

 
Forward modeling of the corner–edge model 
 
 As shown in Fig. 5(a), a complex corner–edge model consisting of 
three domains, namely, domain I (2 km/s),  domain II (3 km/s),  and  
domain III (4 km/s) was incorporated. The overall size of the computational 
domain is 4.8 km × 4.8 km. The position coordinates of domains I and III 
are [0 km, 4.8 km] × [0 km, 0.96 km] and [1.76 km, 4.8 km] × [1.76 km, 4.8 
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km], respectively. The hypocenter frequency is 20 Hz. Additionally, the 
spatial step xΔ = zΔ =12 m and the temporal step tΔ  = 0.001 s. Fig. 5 (b) 
and (c) shows the wavefield snapshots generated by TMSOS–RNN at T = 
0.3 s and T = 0.5 s, respectively. The snapshots show complex reflected and 
transmitted waves from the horizontal inner interface and the vertical inner 
interface, respectively, without any visible numerical dispersion. This 
suggests that the TMSOS–RNN method can effectively simulate wave 
propagation in comparable complex geological situations. 
 

 
 
Fig. 5.  (a) Corner–edge model.  (b) Wavefield snapshots generated by TMSOS–RNN at 
T = 0.3 s.  (c) Wavefield snapshots generated at T = 0.5 s. 
 

 
 
VELOCITY ANOMALY MODEL 
 
 As shown in Fig. 6(a) , a velocity anomaly model is constructed to 
study the effect of the three loss functions on the inversion results. The size 
of the velocity anomaly model is set to 300 m × 300 m,  with a spatial step, 
xΔ  = zΔ  = 6 m and a temporal step, tΔ  = 0.001 s. The hypocenter frequency 

is 20 Hz, and the velocities of domains I, II, and III are 800, 1000, and 1200 
m/s, respectively. The position coordinates of domains I and III are [0 km, 
0.3 km] × [0 km, 0.09 km] and [0.12 km, 0.18 km] × [0.17 km, 0.23 km], 
respectively. Gaussian perturbation of the real model with a standard 
deviation of 10% is performed to generate the initial inversion model. The 
real velocity model and the initial model are shown in Fig. 6 (b). 
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Fig. 6. (a) The Velocity anomaly model. (b) Left: real model;  right: initial model. 

 

 Subsequently, we perform FWI at five different learning rates, 5, 15, 
30, 50, and 70, using the MAE, MSE, and Huber loss functions. The 
inversion results derived using the three loss functions as the objective 
function at the different learning rates are shown in Fig. 7. The results 
suggest that when the learning rates are relatively low, the inversion effects 
of the three loss functions do not differ much (rank from best to worst: 
Huber �MAE �MSE). However, as the learning rate increases, the Huber 
loss exhibits higher stability, and its inversion effect is much better than the 
MAE and the MSE. Furthermore, the inversion results under Huber loss are 
better than the MAE and the MSE at all stages. To compare the Huber loss 
with the MAE and MSE rigorously and intuitively, we define an error L, as 
the 1L norm between the predicted and real-world values at each mesh point 
of the inversion results. Furthermore, smaller L values indicate greater 
consistency between the inversion and real model results. 
 

  
, ,

0 0

pN M
i j i j

i j

y y
L

n= =

−
=∑∑

     
,   (10) 

where N and M are the numbers of rows and columns of the mesh, 
respectively. ,i jy  and ,

p
i jy  are the velocities at the i-th row and j-th column 

of the mesh point in the inverse velocity model and real velocity model, 
respectively. n is the number of mesh point. 
 

 Fig. 8 is the broken line graph obtained by plotting the error L of the 
MAE, MSE, and Huber loss functions under five different learning rates in 
the coordinate system. This shows the characteristics of the three loss 
functions. When the learning rate is low, the errors L of MAE and the Huber 
loss are closer due to the small effect of the learning rate on the MAE. The 
sensitivity of outliers causes the error L of the MSE to be significantly larger 
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than that of the MAE and the Huber loss. As the learning rate increases, 
MAE cannot converge at the extreme value point, resulting in the error L of 
the MAE exceeding that of the MSE. Fig. 8 also shows that the growth of 
the Huber loss is flatter, indicating that the Huber loss has better stability at 
higher learning rates. The error L calculated for the MAE, MSE, and Huber 
loss functions at the different learning rates are given in Table 2. 

 

 
 
 
Fig. 7. Inversion results obtained by TMSOS–MSE, TMSOS–MAE, and TMSOS–Huber 
loss functions at different learning rates. 
 
 
 
Table 2. Errors L calculated for the three TMSOS-based loss functions at five learning 
rates (5, 15, 30, 50, and 70). 
 
Learning rates 5 15 30 50 70 

MSE 1.275 1.183 1.399 2.359 5.175 

MAE 1.118 1.127 1.302 3.089 5.291 

Huber 1.086 1.055 0.981 1.315 2.051 
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Fig. 8. Broken line graph obtained by plotting the error L of the TMSOS–MSE, 
TMSOS–MAE, and TMSOS–Huber loss functions at different learning rates in the 
coordinate system 
 

 
THIRD-ORDER LADDER MODEL 
 
 A third-order ladder model, as shown in Fig. 9, is constructed. Its size 
is set to 600 m × 600 m, with a spatial step xΔ  = zΔ  = 6 m, and a temporal 
step tΔ  = 0.001 s. The hypocenter frequency is 20 Hz, and the velocities of 
domains I, II, and III are 800, 1200, and 1600 m/s, respectively. 
 

 
 

Fig. 9. Third-order ladder model. 
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 The TMSOS method adopts the second-order MSPRK method in 
spatial or temporal discrete format. This method has a precision close to the 
third-order precision and is more efficient than the third-order model in 
computational efficiency. The advantages of the TMSOS method in terms of 
precision and computational efficiency are tested by inversion of the third-
order model using TMSOS and the traditional third-order SPRK, 
respectively. The initial model is generated by +10% Gaussian perturbation 
of the real model. The number of iterations, errors, and time required for 
iteration for the two models are displayed in Table 3. A smaller difference 
in the inversion effect implies that the iteration time required for the 
TMSOS method is much shorter than that of the traditional third-order 
SPRK method. Therefore, TMSOS has a higher computational efficiency 
while achieving a precision close to that of the third-order model. 

 
 

Table 3. Number of iterations, errors, and time required for iteration for the two methods. 
 
 Number of 

iterations 
Errors Time required for iteration 

TMSOS 135 0.508 2922.63s 
Third-order SPRK 135 0.481 5180.35s 
 
 
 
SIGSBEE MODEL 
 
 Finally, the complex Sigsbee model is studied. The size of the 
sampled model is 101 × 61, with spatial step xΔ  = zΔ  = 8 m, and temporal 
step tΔ  = 0.001 s. The velocity ratio of the high-velocity salt mound to the 
sediment, and the gradient structure of the sediment lead to a strong multiple 
scattered wavefield, making precise inversion of the model difficult. Fig. 10 
shows the real and initial models as well as their inversion results. The 
initial model is generated by performing a Gaussian perturbation on the real 
model with a standard deviation of 5. There are 101 hypocenters and 101 
receivers. All receivers were placed horizontally with an interval distance of 
8 m at a distance of 0.024 km below the surface. Additionally, a small-batch 
inversion strategy with a batch size of 5, a traversal number of 5, and a 
learning rate of 15 is used. The velocities in the real model range from 1400 
to 4600 m/s. The bottom of the initial model is slightly different from the 
real model, which basically characterizes the high-velocity salt mounds in 
the high-velocity region. This indicates the TMSOS method's effectiveness 
in performing complex model inversions.  
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Fig. 10. Inversion results of the real model, initial model, and the TMSOS method.  

 
 
CONCLUSION 
 
 In this study, the MSPRK method, TMSOS, is combined with RNN 
(TMSOS–RNN) as the forward modeling method used in the FWI process. 
Additionally, deep learning techniques such as small-batch strategies and 
optimizers are used to implement FWI. Furthermore, the Huber loss 
function is introduced. Two forward modeling methods and three inversion 
modeling methods are designed. The results of the forward modeling 
methods suggest that the TMSOS–RNN method provides precise wavefield 
information and can effectively suppress numerical dispersion compared to 
the conventional FD–RNN method. The first inversion model, velocity 
anomaly inversion model, reveals that the Huber loss has higher stability 
and higher learning rates than the MSE and MAE. The second inversion 
model, the third-order ladder model, suggests that the TMSOS method 
adopts a second-order format for time discretization but has a precision 
close to the third-order format and is more efficient than the third-order 
format in computational efficiency. Finally, the Nadam optimizer is used to 
invert a complex velocity model, the Sigsbee model. The results of this 
model suggest that deep learning techniques can be used to implement FWI 
reasonably and efficiently. Therefore, deep learning can be used to 
implement forward modeling and inverse modeling. This study only 
incorporates the forward and inverse modeling of a two-dimensional 
acoustic wave equation. However, it is possible to extend the results 
obtained to the three-dimensional acoustic wave equations and the elastic 
wave equations, which we intend to study in the future. Furthermore, 
selecting the hyper-parameters of the Huber loss function is a key factor in 
determining the inversion results. In this study, the hyper-parameters are 
selected based on the experimental results. Therefore, a systematic study for 
the selection of hyper-parameters is possible. Furthermore, factors such as 
the effect of the learning rate decay strategy on inversion results, the effect 
of the initial-value model on inversion results, and the selection of certain 
optimizers need to be further explored. 
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APPENDIX  
 
SYSTEM COEFFICIENTS OF MSPRK AND OPTIMIZATION OF THE 
FINITE DIFFERENCE METHOD 
 
 A second-order MSPRK format to discretize time was adopted to 
solve the acoustic equation. The system coefficients of MSPRK given in eq. 
(6) are as follows: 
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 Tables A-1 and A-2 show the optimization coefficients of the first-
order and second-order derivatives in finite-difference format for different 
operator lengths when the error limit is 0.0001, respectively. Zhang et al. 
verified that the absolute errors of the numerical and analytic wave numbers 
corresponding to these optimization coefficients in the finite-difference 
format are smaller than those of the classical finite difference format. 
 
 The optimal finite difference expression of the first-order derivative is 
written as: 
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j
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≈ + Δ
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where the coefficient 1

jb  ( 1 1( 1,2, , )j jb b j N− = − = K is shown in Table 1, and 2N 
is the order of the optimized finite-difference format. 
 
 The optimal finite difference expression of the second-order 
derivative is as follows: 
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≈ + Δ

∂ Δ ∑   (A-3) 

 
where the coefficient 2

jb  is shown in Table 2. Unlike the first-order 
derivative, 2 2 ( 1,2, , )j jb b j N− = = K , and 2N is the order of the optimized 
finite-difference format. For the optimized finite-difference format of the 
second-order derivative, the coefficient satisfies: 
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 The coefficient of 0( )u x  is the opposite of the sum of all the 
coefficients other than 0( )u x . 
 

Table A-1. Optimization coefficients for the first-order derivative in finite-difference 
format under different operator lengths. 

 

 4th-order 6th-order 8th-order 10th-order 12th-order 

1
0b  0.0 0.0 0.0 0.0 0.0 
1
1b  0.678803 0.777931 0.841496 0.884147 0.910679 
1
2b  -0.089627 -0.173887 -0.245330 -0.302336 -0.341879 
1
3b   0.023387 0.060819 0.102751 0.138340 
1
4b    -0.008398 -0.026815 -0.048807 
1
5b     0.003981 0.013021 
1
6b      -0.001990 

 

 
Table A-2. Optimization coefficients for the second-order derivative in finite-difference 
format under different operator lengths. 

 

 4th-order 6th-order 8th-order 10th-order 12th-order 

1
0b  0.0 0.0 0.0 0.0 0.0 
1
1b  0.678803 0.777931 0.841496 0.884147 0.910679 
1
2b  -0.089627 -0.173887 -0.245330 -0.302336 -0.341879 
1
3b   0.023387 0.060819 0.102751 0.138340 
1
4b    -0.008398 -0.026815 -0.048807 
1
5b     0.003981 0.013021 
1
6b      -0.001990 

 
 


