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ABSTRACT 
 
Okhovvata, H.R., Riahib, M.A. and Abedi, M.M., 2022. The effect of supervised feature 
extraction techniques on the facies classification using machine learning. Journal of 
Seismic Exploration, 31: 563-577. 
 
        The widely accepted supervised machine learning classification algorithms are used 
for the semi-automating of the feature extraction process. In the machine learning facies 
classification process, each wireline log is a feature in the feature space. Since features 
are important in classification decisions, using suitable features improves the 
performance of a classification algorithm. 
 
 Three feature sets were compared containing the original conventional features 
(well-logs), and the extracted features from the unsupervised PCA and supervised FDA 
methods, using two classifiers algorithms, namely SVM and RF.  The FDA showed that 
improvement in the performance of facies classifiers while PCA can even deteriorate the 
results. An F1 score of 0.61 averaged over the available 20 folds for the combination of 
FDA feature extractor and RF classifier is achieved. This represents about a 5% 
improvement in the prediction accuracy, compared to the conventional use of wells 
information as features. Moreover, the F1 score was achieved without the usage of 
feature extraction. This value is 0.56 by using all 7 conventional features (well-logs), 
thus 5 percent lower than using FDA with only 3 first features. 
 
KEY WORDS: facies classification, Fisher Discriminant Analysis (FDA),  
    machine learning, Principle Component Analysis (PCA),  
               Random Forest (RF), Support Vector Machine (SVM).  
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INTRODUCTION 
 
        Facies classification is a fundamental part of geologic investigations. It 
includes assigning a rock type or class to different measured properties. 
Accurate classification of facies and their distributions can provide a better 
insight into the depositional environment. Depositional facies provides 
useful information about rock properties such as permeability, porosity, 
density, and pore size making it possible to predict the variation of porosity 
and permeability in a reservoir. 
 
 A criterion for lithofacies classification is rock core samples extracted 
from drilled wells. Nevertheless, core samples may not be available. Due to 
the limited access of the core samples in comparison with the number of 
wells in the field, it is necessary to develop an efficient tool to classify 
lithofacies without cores (Dubois et al., 2006). A conventional petrophysical 
procedure to generalize lithofacies from cored wells to wells without core is 
matching the physical rock properties measured by wire-line logs in these 
wells. Manually assigning lithofacies is a cumbersome process that may be 
influenced by human errors because of the involvement of different 
interpreters.  
 
 The traditional linear methods are not always successful; mainly 
because: (i) Features (wire-line logs) are not linearly related to each other; 
(ii)  a feature space has overlap between different facies classes;  (iii) the 
increase in dimensions (increasing the number of well-logs) add to the 
complexity of the problem. 
 
 Today, benefited by the fast development of artificial intelligence (AI) 
and by the success of machine learning in solving non-linear classification 
problems, extensive studies have been done on implementing machine 
learning algorithms to rock facies classification. The earliest works were 
based on applying neural networks to rock type classification (Wolf et al., 
1982; Busch et al., 1987; Baldwin et al., 1990; Rogers et al., 1992; Kapur et 
al., 1998; Saggaf and Nebrija, 2000; Russell et al., 2002). Cuddy (1997) did 
a review of the implementation of fuzzy logic in petrophysics. Dubois et al. 
(2007) compared four machine learning approaches to facies classification 
(Bayes’, Fuzzy logic, K-Nearest Neighbor (KNN), and feed forward-back 
propagating artificial neural network). Most recently, there have been 
Support Vector Machine (SVM) (Wang et al., 2013; Hall, 2016) and 
ensemble method (Bestagini et al., 2017) implementations. Hall (2016) 
proposed a geophysical tutorial to demonstrate a basic implementation of 
machine learning techniques for facies classification. To improve the results 
of facies classification tasks, the Society of Exploration Geophysicists 
(SEG) held a machine learning contest (Hall, 2016), in which the 
participants were asked to use different methods to tackle this problem 
through utilizing various classifiers. The competition results are documented 
in Hall and Hall (2017), which most of them were based on the 
implementation of different classifier algorithms. 
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 In this study, we first review the facies classification problem, followed 
by a description of the proposed facies classification algorithms. We 
improve the accuracy of the facies classification based on supervised feature 
extraction techniques. The strategy is based on adding a feature extraction 
step to the conventional workflow before classification (Fig. 1). Using new 
extracted features that allow adequate separation of the facies classes 
instead of the original features, we improve the classification accuracy. We 
assess two different feature extraction methods, namely the supervised and 
unsupervised approaches. Finally, we apply our method to the 2016 SEG 
well-logging benchmark dataset, and show how it further improves the 
reported best machine learning prediction results by Random Forest and 
Support Vector Machine classifiers. 
 

 
 

Fig. 1. The workflow illustrates the steps involved in the supervised machine learning 
facies classification.  Feature extraction step added to conventional works. 
 
 
METHODOLOGY 
 
Feature extraction 
 
 A feature plays a significant role in machine learning classification 
tasks. Features are extracted from an original set of measured data and 
expected to be informative and non-redundant, assisting the subsequent 
classification (any learning) of problems. Therefore, in pattern recognition, 
it is more beneficial to insert a feature extraction step in the algorithm, 
before the classification. We utilize supervised and unsupervised feature 
extraction methods in facies classification which include feature extraction 
methods of Principal Component Analysis (PCA) and Fisher Discriminant 
Analysis (FDA). 
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Principal Component Analysis  
 
 There exist various techniques for dimensionality reduction; Principal 
Component Analysis (PCA) is one of the oldest and most commonly used 
ones. The PCA reduces a large set of primary features (conventional logs) to 
highlight variations in the data by a linear combination of original features 
and find new reduced features. PCA is a linear and unsupervised 
dimensionality reduction technique that projects data with higher 
dimensions into a lower dimension while preserving the main information in 
the original input data set. 
  
 Let m and n be the number of original variables and number of 
observations for each variable (i.e., the number of data samples), 
respectively.  The input data set is then a matrix of dimension 𝐗 ∈ ℝ!×!, 
wherein ℝ denotes the field of real numbers. 
   
 The standard PCA algorithm is briefly described as follows: 
 
Step 1: Normalize the columns of X (variables) by subtracting the mean of 
each column followed by division with the standard deviation of each 
column in such a way that the mean and variance of each column are equal 
to 0 and 1, respectively. 
 
Step 2: Compute covariance matrix C: 
 

𝐂 =
1

𝑛 − 1
𝐗!𝐗. (1) 

 
Step 3: Calculate the eigenvectors (V) and eigenvalues (A) from the 
covariance matrix (or correlation matrix) C by the eigenvalue 
decomposition (EVD): 
 

𝐂 = 𝐕𝐀𝐕! ,   
 
where 

𝐀 = 𝑑𝑖𝑎𝑔(𝜆! ≥ 𝜆! ≥ ⋯ ≥ 𝜆! ≥ 0), 

(2) 

 
where 𝜆! is the set of eigenvalues. Of note, eigenvectors are arranged 
according to their eigenvalues in descending order. In this step feature 
extraction by PCA is completed and the new features are extracted as: 
 

𝐓 = 𝐗𝐕, (3) 
 
where T is the 𝑛×𝑛 transformed data in the PCA domain. 
 
Step 4: Decision on the number of eigenvectors. Determining the number of 
principal components by another analysis method and decomposing V into a 
score space (𝐕!") and a residual space (𝐕!"#): 
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𝐀 =
𝐀!" 0
0 𝐀!"#

   , 

 
𝐕 =  𝐕!" ∈ ℝ!×! 𝐕!"# ∈ ℝ!×(!!!)    , 

(4a) 
 
 

(4b) 
 
where, 
 

𝐀!" = 𝑑𝑖𝑎𝑔 𝜆!. 𝜆!… . 𝜆!    , 
 

𝐀!"# = 𝑑𝑖𝑎𝑔 𝜆!!!. 𝜆!!!… . 𝜆!    . 
 

(5a) 
 

(5b) 

 
Step 5: Compute the projection matrix T: 
 

𝐓 = 𝐗𝐕!"     , (6) 
 

where T is 𝑛×𝑎 reduced transformed data in the PCA domain. 
 
 
Fisher discriminant analysis (FDA) 
 
 The process of PCA ignores class labels and does not consider the 
information (discrimination) between different classes during the calculation 
of the transformed matrix (T). This problem is addressed within Fisher 
Discriminant Analysis (FDA) technique. FDA transformation matrix 
includes vectors that maximize scatter between classes while minimizing the 
within-class separation. In other words, FDA can be considered, a 
supervised PCA.  
  
 Let 𝑥! be a column vector constructed from the ith row of data set 
matrix, X. Besides, let p be the number of classes and 𝑛! be the number of 
samples within the j-th class. 
   
 The standard FDA framework is briefly formulated as follows: 
 
Step 1: Compute the total-scatter matrix 𝐒! by, 
 
  

𝑆! = 𝐗! − 𝐗 𝐗! − 𝐗 !
!

!!!

, 
(7) 

 
 
where 𝐗 represents the total mean vector. 
 
Step 2: Compute intra-class scatter matrix 𝐒!  
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𝐒! = 𝐒!

!

!!!

, 
  (8) 

 

 
where: 
 

𝑺! = 𝐗! − 𝐗! 𝐗! − 𝐗!
!

!

𝑿!∈𝑿!

, 
(9) 

 
also, 𝐗! denotes the mean of the j-th class. 
 
Step 3:  Calculate the inter-class scatter matrix, 𝐒!:  
  

𝐒! = 𝑛! 𝐗! − 𝐗! 𝐗! − 𝐗!
!

!

!!!

, 
 

(10) 

 
we have  

𝐒! = 𝐒! + 𝐒!   .  (11) 
 

Step 4: The FDA vectors, W, can be obtained using the generalized 
eigenvalue decomposition:  
 

𝐒!𝐖 = 𝜆𝐒!𝐖   . (12) 
 
 Since 𝑟𝑎𝑛𝑘 𝐒! < 𝑝, there exist at most 𝑝 − 1 eigenvectors 
corresponding to non-zero eigenvalues (Fukunaga, 1990).  Simply put, FDA 
can find at most 𝑝 − 1 meaningful features (the remaining FDA features are 
arbitrary). This is a fundamental bottleneck of the FDA in dimensionality 
reduction. Let k be several non-zero eigenvalues :  
 

𝐖! = 𝐰! 𝐰!    … 𝐰!  (13) 
 
Step 5: Calculate the FDA transformation vectors:  
 

𝐙! =𝐖!
!𝐗!    . (14) 

 
   Unlike PCA, FDA considers the between classes information to 
compute projection vectors. Therefore, in multi-class classification 
problems, it is expected that FDA transformation vectors discriminate better 
between different classes compared to PCA (Fakhari and Hashemi, 2019). 
 
 Random forest (RF) and support vector machine (SVM) classifiers, 
which are reportedly robust (Hall and Hall, 2017; Mosser and Briceno, 
2017; Chen and Guestrin, 2016), are chosen for machine learning facies 
classification. In the following, we give a brief description of them.  
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Random Forest  
 
 Random forest (RF) is based on the principle of using a decision tree 
as the basic classifier. Decision Tree is one of the easiest and most popular 
classification algorithms. It includes a series of nodes, a directional path that 
starts at the base with a single node and extends to the many leaf nodes that 
represent the categories that the tree can classify. Each node represents one 
of the features of our data, each branch explains a decision and each leaf 
shows a class label (Breiman, 2001). 
  
 Random Forest is an example of a learning methods ensemble that 
aggregates, or forest, multiple decision trees to limit overfitting and 
minimize error (Breiman, 2001). RF classifier outperforms most classifiers 
because of resistance to overfitting, ease of tuning parameters, and being 
fast (Kavzoglu, 2017). The final decision of determination of class label for 
a new sample is a decision made by combining individual tree votes in the 
decision forest. The main purpose of the RF classifier is to reduce error by 
creating multiple decision trees using a bootstrapped sampling method. The 
bootstrap method and the random feature selection can decrease the 
correlation between the classification trees by reducing the strength of 
individual trees, which reduces the risk of overfitting using uncorrelated 
trees (James et al., 2013; Pelletier et al., 2017). 
 
 Any RF classification model has two parameters that have to be tuned 
before model training: The number of trees in the forest and the maximum 
number of randomly selected features for node splitting decisions (Cracknell 
and Reading, 2014). We select these two parameters through cross-
validation analysis. The best parameter pair is chosen by the lowest 
validation error. 
 
 
Support Vector Machine  
 
 Support vector machine (SVM) is a supervised non-parametric 
classifier method that has been extensively used for classification and 
regression problems. The main idea of SVM is to find the optimal 
separating boundary which maximizes the margin of the two classes (Corres 
and Vapnik, 1995). For a detailed explanation of SVM, the theory refers to 
Corres and Varpnik (1995). The generalized SVM can classify nonlinear 
and multi-class data (Liu and Zheng, 2005). In general, the SVM is a linear 
classifier. In this paper, we use a Radial Basis Function (RBF) kernel for the 
SVM classifier which is successfully used for non-linear classification 
models. The radial basis function (RBF) kernel is a popular kernel function 
employed in various kernel-based learning schemes. 
 
 SVM classifier has two hyperparameters that demand optimization: (i) 
The penalty function C which controls the trade-off between minimizing the 
training error and maximizing the classification margin and the model 
complexity; (ii) The gamma kernel parameters (𝛾). Thus, we need to find 
the best combination of C and 𝛾 to improve classification performance.  
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EXPERIMENTAL RESULTS 
 
Problem Dataset 
 
 The SEG in 2016 provided a well-log dataset for their facies 
classification challenge. This dataset contains 3232 samples in 8 wells in the 
Hugoton field of southwest Kansas (Dubois et al., 2007). In this dataset, 
each sample was placed at a depth of one of the eight wells which 
comprised of five wireline log curves, two indicator variables, measured 
depth, and labeled facies data based on core analysis. Wireline log curves 
include gamma-ray (GR), resistivity (ILD_log10), photoelectric effect (PE), 
neutron density porosity difference (DeltaPHI), and average neutron density 
porosity (PHIND).  
 
 The cyclical vertical succession of the Council Grove Group reveals a 
pattern of eight main facies in this region. Puckette et al. (1995) derived a 
set of 9 lithofacies which are mostly used for lithofacies classification using 
machine learning in this area (Hall, 2016). The facies descriptions are 
labeled as Non-marine sandstone (SS), Non-marine coarse siltstone (CSiS), 
Non-marine fine siltstone (FSiS), Marine siltstone and shale (SiSh), 
Mudstone (MS), Wackstone (WS), Dolomite (D), Packstone grainstone (PS) 
and Phylloid-algal bafflestone (BS). 
 

  
 
Fig. 2. Displays the wireline logs: gamma-ray (GR), resistivity (ILD_log10), an average 
of the neutron and density log porosity (DeltaPHI), the difference between the neutron 
log and the density porosity (PHIND), photoelectric factor (PE) and interpreted 
lithofacies assigned in the Shankle well. 
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 Fig. 2 displays the wireline logs of an available well (Shankle) as well 
as interpreted lithofacies assigned in the well. 
 
 From a pattern recognition point of view, each wireline log 
information is called a ‘feature’. In classification tasks, the feature selection 
criteria are based on the facies class separability. Fig. 3 shows a cross-plot 
between wireline log parameters in which each facies category is indicated 
by a color.  It can be seen that the facies (indicated by colors) are not 
completely separable in the feature space.  
 
 

 
 

Fig. 3. Scatter plot diagram of the distribution of wireline logs (PE, GR, ILD_log10, 
DeltaPHI, PHIND) is shown. Each facies is represented with different colors for better 
visualization. 
 
 
 To have a better facies classification, we propose to apply feature 
extraction methods, beforehand. This means generating new features from 
the available primary features for a better separation of the classes into 
extracted feature space.  
 
 Our experimental results have been carried out on published data sets 
for the facies classification described by Hall (2016). First, we implement 
both supervised and unsupervised feature extraction methods namely PCA 
and FDA on the original dataset before classification. We extract new 
features from a primary set of wireline logs to better separate facies classes 
in the new extracted space and further increase classification performance.  
 
 Fig. 4 shows how facies classes are separated in the new space. In Fig. 4 
the cross-plot of three elements of log data (out of the seven primary 
features) is compared with the three first features extracted from FDA. In 
Fig. 4a, the overlapping facies classes in 3D space are difficult to separate 



 
 

572 

with parametrically certain boundaries in the logs domain. But in Fig. 4b, 
we can observe that the facies classes are better clustered. Although FDA is 
not a clustering method, it can help visualize the patterns such as facies 
classes by reducing dimensionality. Due to a large number of facies classes 
(9 classes), these patterns might not be well visible on a 3D FDA plot, but 
they show up more clearly in higher-dimensional space. 
  

 

 
Fig. 4. a) A representative cross-plot of three elements (out of the seven elements) of log 
data (raw features) compared with b) three first features extracted from FDA. Each facies 
class is depicted by color. 

a) 

b) 
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 With the PCA and FDA extracted features we have three datasets: well 
logs, PCA features, and FDA features datasets to compare. To evaluate the 
predictive performance of a classification model, we need to split data into 
training and test parts. We select Shankle well data as the test well (similar 
to Hall, 2016) to evaluate the performance of the final classification process. 
We evaluate the classification models in terms of F1 score criteria to have a 
comparable assessment with those reported in  Hall and Hall (2017). 
 
 First, classification is performed via an SVM classifier and the 
conventional features (well logs) without using any feature extraction. In a 
similar test, Hall (2016) achieved an average F1 score of 0.43 on the blind 
test well (Shankle well). We obtained the average F1 score of 0.49 for the 
blind test well, using an SVM with Radial Basis Function (RBF) kernel 
which optimized its hyperparameters.  
 
 Next, we performed an SVM classifier using features extracted from 
PCA and FDA approaches. 
 
 To rank features in classification for every three datasets (well legs, 
PCA, FDA), we compare both SVM and RF classification methods by 
adding features in the learning step. For SVM and RF classifications, the 
average F1 score of 20 cross-validation experiments for each available 
dataset as inputs of classifier, are shown in Figs. 5 and 6, respectively. 
 

 
 
 
Fig. 5. Averaged SVM classification F1 score after 20 cross-validation experiments for 
Original features (red), PCA (blue), and FDA (red) versus the number of features. 
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 In Fig. 5, the red line shows that the proposed SVM prediction accuracy 
for the test data (Shankle Well) increases by increasing the number of 
features in all three models. This trend indicates that more features provide 
more discriminative power. When using FDA features (green line in Fig. 5), 
the F1 score grows fast with the addition of the first 3 FDA features and 
approximately stabilizes near a certain point. Another point of evidence in 
this figure is the failure of the unsupervised PCA method (blue line). 
Among the three input datasets provided by different features approaches, 
which are tested here, the FDA results in a higher cross-validation F1 score 
and converges to this score with fewer features. 
  
 Next, we repeat the classification problem by RF classifier. The RF 
predicts the facies classes with an F1 score of 0.56 for the Shankle blind 
well, when using the conventional features (well logs) without using any 
feature extraction. With the FDA-generated features, the F1 score improves 
up to 0.61 (Fig. 5). 
 
 

 
 
 
Fig. 6. Averaged RF classification F1 score after 20 cross-validation experiments for 
Original features (red), PCA (blue), and FDA (red) versus the number of features. 
 
 
 Comparing the classification accuracy of the results of the two 
classifiers algorithms (Figs. 5 and 6), the RF classifier performs better than 
SVM for all the available datasets (collected dataset with well logs, PCA, 
and FDA features). The accuracy of prediction for both classifiers is 
improved by inserting a supervised feature extraction (FDA)  step before 
running classification. 



 
 

575 

 The FDA approach can also be useful for feature reduction purposes. In 
our problem, there are 9 facies classes and 7 original features. Since the 
number of facies classes is more than the number of primary original 
features, computed features from FDA have the same size as primary 
dimension space. However, as shown in Figs. 5 and 6, acceptable results can 
be obtained by using only the first three FDA dimensions for both 
classifications by different algorithms.  
 
 A predicted facies label is obtained for each approach. Fig. 7 shows a 
comparison between true facies labels, predicted facies from SVM, and RF 
classifiers with and without using the FDA approach on the test well. 
 
 

 
 

Fig. 7. Representation of vertical facies sequence versus depth in the testing data from 
Shankle well for a) true facies, b) SVM classification results, c) combination of FDA 
with SVM, d) RF classification, and e) combination of FDA with FDA algorithm. 
 
 
 Fig. 8 compares the predicted versus actual facies for predictions on 
the Shankle test data. In Fig. 8 the five wireline logs are plotted as raw 
features, while the true and predicted facies labels are shown using the same 
depth information. We achieved the best predictions by combining the FDA 
approach with the RF classifier.  

   a) b) c) d) e) 
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Fig. 8. Wireline log measurements and comparison of facies classification between true 
labels and our proposed combination of FDA and RF methods. 
 
 
 
CONCLUSIONS 
 
 The performance of facies classification based on conventional well-
log is improved by implementing a supervised feature extraction method. To 
examine the verifiable 2016 SEG well dataset the Support Vector Machine 
(SVM) and Random Forest (RF) was applied. Then the results were 
compared with conventional well-log data as features versus extracted 
features as inputs of the machine learning classification process. Both 
supervised and unsupervised feature extraction techniques were 
implemented in facies classification. The obtained results from the Principal 
Component Analysis (PCA) as an unsupervised and Fisher Discriminant 
Analysis (FDA) as a supervised feature extraction method were 
compared. The supervised feature extraction method showed that it can 
improve machine learning facies classification results. The FDA improves 
the performance of facies classification and can reduce dimensions if a high 
number of conventional primary features are available. The proposed 
strategy provides a more accurate and consistent workflow for facies 
classification-based applications. 
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