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ABSTRACT 
 
Xu, Y.P., Zhang, K., Li, Z.C., He, Z.L., Wang, J.C. and Gao, J.F., 2022. Full waveform 
inversion of viscoelastic medium based on gradient preprocessing. Journal of Seismic 
Exploration, 31: 579-596. 
 
 The subsurface medium exists mainly in a viscoelastic form, and there are two 
phenomena: amplitude attenuation and phase dispersion. However, the full waveform 
inversion is used to inverse the subsurface medium parameters in a large scale way, and 
the phase dispersion phenomenon is more often solved by migration. Therefore, we 
investigate the Kelvin-Voigt model with only amplitude attenuation. In this paper, we 
derive the back propagation wavefield formulation and gradient formulation for full 
waveform inversion of viscoelastic media based on the Kelvin-Voigt model, and analyze 
the correctness and feasibility of the method. Also, in viscoelastic media, low velocity 
geological bodies may cause the gradient of the full waveform inversion to fall into local 
convergence. It is shown that the gradient preprocessing method based on the 
pseudo-Hessian operator can suppress the gradient from falling into local convergence. 
Therefore, this manuscript incorporates a pseudo-Hessian operator for gradient 
preprocessing and derives a gradient preprocessing formulation for full waveform 
inversion of viscoelastic media based on gradient preprocessing, which solves the 
problem that the inversion gradient falls into local convergence. It is demonstrated 
through examples that the method can solve the problem of the inversion gradient falling 
into local convergence caused by the low-velocity body in the full waveform inversion of 
viscoelastic media. 
 
KEY WORDS: viscoelastic media, gradient preprocessing, Kelvin-Voigt model, 
     full waveform inversion. 
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INTRODUCTION 
 

Among multi-parameter seismic inversions, full waveform inversion 
(FWI) is a high-precision inversion method (Tarantola, 1984; Pratt et al., 
1999; Mora, 1987) with the potential to provide accurate parametric models 
of the subsurface medium. And now the full waveform inversion has been 
mainly studied with viscous acoustic media (Ren et al, 2015; Yong et al, 
2021). However, purely elastic and viscous acoustic media do not exist in 
the subsurface medium, but more in the form of viscoelastic media. In 
addition, there are two phenomena of amplitude attenuation and phase 
dispersion in viscoelastic media. However, the full waveform inversion is 
used to inverse the subsurface medium parameters in a large scale way, and 
the phase dispersion phenomenon is more often solved by migration. 
Therefore, we investigate the Kelvin-Voigt model with only amplitude 
attenuation. In this paper, we derive the back propagation wavefield 
formulation and gradient formulation for full waveform inversion of 
viscoelastic media based on the Kelvin-Voigt model, and analyze the 
correctness and feasibility of the method. 

 
Also, in viscoelastic media, low velocity geological bodies may cause 

the gradient of the full waveform inversion to fall into local convergence. 
The problem of how to suppress the gradient from falling into local 
convergence in the full waveform inversion of viscoelastic media needs to 
be solved urgently. Wang et al. (2017) analyzed the Hessian matrix and 
resolution matrix using the method of decoupling the P- and S- waves of the 
second-order elastic wave equation, and confirmed that the conjugate 
gradient preprocessing of the P- and S- wave separation can effectively 
suppress the crosstalk effects and improve the accuracy of the inversion of 
the low-velocity anomalies. Chen et al. (2017) derive the pseudo-Hessian 
matrix of each isoelastic wave for gradient preprocessing. 

 
The above study shows that the gradient preprocessing method based 

on the pseudo-Hessian operator can suppress the gradient from falling into 
local convergence. Therefore, in this paper, we incorporate the 
pseudo-Hessian operator for gradient preprocessing and derive a gradient 
preprocessing formulation based on gradient preprocessing for full 
waveform inversion of viscoelastic media (referred to as P-QEFWI), which 
solves the problem that the inversion gradient falls into local convergence. It 
is demonstrated through examples that the method can solve the problem of 
the inversion gradient falling into local convergence caused by the 
low-velocity body in the full waveform inversion of viscoelastic media 
(referred to as QEFWI). 

 
 

PRINCIPLE OF FULL WAVEFORM INVERSION FOR VISCOELASTIC 
MEDIA BASED ON GRADIENT PREPROCESSING 
 

In this paper, we derive the equation for the Kelvin-Voigt model, and 
the isotropic wavefield equation for a viscoelastic medium based on the 
Kelvin-Voigt model is as follows (Fu et al., 1993; Ren et al., 2014) 
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𝑢! ,𝑢! , 𝜏!! , 𝜏!! , 𝜏!"  is the wave field component and !!!
!"
, !!!
!"

 is 

the memory variable of the viscoelastic wave field component. 𝜆, 𝜇, 𝜆!, 𝜇!  

are the Lamé coefficients.	Some variables in eq. (1) can be expressed as the 

following equation 

𝜆 + 2𝜇 = 𝜌𝑉!!, 𝜆! + 2𝜇! =
!!!!

!!!!!!

𝜇 = 𝜌𝑉!!, 𝜇! =
!!!!

!!!!!!

𝜆 = 𝜌𝑉!! − 2𝜌𝑉!!, 𝜆! =
!!!!
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− 2 !!!!

!!!!!!
𝜔 = 2𝜋𝑓!

       .       (2) 

VP is the longitudinal propagation velocity of the P-wave in the subsurface 
medium, 𝑉! is the longitudinal propagation velocity of the S-wave in the 
subsurface medium, and 𝜌 is the density.	 𝑓! is the main frequency of the 
seismic subwave, and 𝑄!,𝑄!  is the quality factor of the longitudinal and 
transverse waves.	The objective function of the full waveform inversion in 
elastic waves can be written as the following equation 
 

minE 𝑣   = 1
2

  𝑑!"#$ −  𝑑!"#$  ! +   𝑑!"#$ −  𝑑!"#$ !!
! d𝑡 ,  (3) 

 
E is the objective function, 𝑑!"#$ ,𝑑!"#$  is the simulated seismic record, 
and 𝑑!"#! ,𝑑!"#$  is the observed seismic record. According to the adjoint 
state method, we use Lagrange multipliers to modify the objective function 
as 

minE 𝑣   = 𝑑!"#$ −  𝑑!"#$ ! +  𝑑!"#$ −  𝑑!"#$ !
!

!
d𝑡 

+ Λ!𝛮! + Λ!𝛮! + Λ!𝛮! + Λ!𝛮! + Λ!𝛮!
!
! d𝑡  ,        (4) 

Λ!, (i=1,2,..,5) are Lagrange multipliers and 𝐻!, (i = 1,2,..,5) are the 
corresponding first-order velocity stress equations as follows 
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We take derivatives for each component in eq. (4) 
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We organize eq. (6) by replacing the Lagrangian multipliers by the 

original variables with "*", and we obtain the back propagation wave field 
equation: 
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(7) 
 
The upper right corner with "*" is the variable of the back propagation 

wave field. Next, we take the parameter perturbation term of the wave 
equation as follows 

 

(𝜌 + 𝜗𝜌) !(!!!!!!)
!"

= !(!!!!!!!!)
!!

+ !(!!"!!!!")
!"

(𝜌 + 𝜗𝜌) !(!!!!!!)
!"

= !(!!"!!!!")
!!

+ !(!!!!!!!!)
!"

! !!!!!!!!
!"

= 𝜆 + 2𝜇 + 𝜗𝜆 + 2𝜗𝜇 !(!!!!!!)
!"

+ (𝜆 + 𝜗𝜆) !(!!!!!!)
!"

+ 𝜆! + 2𝜇! + 𝜗𝜆! + 2𝜗𝜇! !
!"
(!!!
!"
+ 𝜗 !!!

!"
) + (𝜆! + 𝜗𝜆!) !

!"
(!!!
!"
+ 𝜗 !!!

!"
)

! !!!!!!!!
!"

= 𝜆 + 2𝜇 + 𝜗𝜆 + 2𝜗𝜇 !(!!!!!!)
!"

+ (𝜆 + 𝜗𝜆) !(!!!!!!)
!"

+ 𝜆! + 2𝜇! + 𝜗𝜆! + 2𝜗𝜇! !
!"
(!!!
!"
+ 𝜗 !!!

!"
) + (𝜆! + 𝜗𝜆!) !

!"
(!!!
!"
+ 𝜗 !!!

!"
)

!!!"
!"

= (𝜇 + 𝜗𝜇) ! !!!!!!
!"

+ ! !!!!!!
!"

+ 𝜇! + 𝜗𝜇! !
!"

!!!
!"
+ 𝜗 !!!

!"
+ !

!"
!!!
!"
+ 𝜗 !!!

!"
 

  

        (8) 

We take the parameter perturbation term of eq. (8) 
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We compute the matrix as follows 
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We partial derivate the parameters and obtain the gradient equation as 

follows 
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The chain rule leads to the following: 
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In this paper, we next explain the gradient preprocessing method for 

full waveform inversion of viscoelastic media. In the case of considering 
only the Green function of the shot point without considering the Green 
function of the receiver point, the pseudo-Hessian operator is obtained as 
follows 

𝑯𝒑𝒔𝒆𝒖𝒅𝒐 =
!𝑳
!𝒎
𝒖!

! !𝑳
!𝒎
𝒖!!"!!"

!    ,           (13) 
 

i is the number of shots, and 𝒖! is the wave field vector of the i-th shot. In 
this paper, the method is extended to a viscoelastic medium with the 
following equation 
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(14) 
𝜏!!" , 𝜏!!" , 𝜏!"#  are the subvectors of the wavefield vector without viscous 

terms, and 𝜏!!! , 𝜏!!" , 𝜏!"#  are the vectors of viscous terms of the 
wavefield vector, both of which can be obtained directly in the forward 
motion.	To prevent division by zero, a very small number α is added to the 
denominator in this paper.	 Therefore, the gradient preprocessing operator 
and the preprocessed gradient can be written as follows 

 

𝑷! = 1/(𝑯! + 𝛼)
𝑷! = 1/(𝑯! + 𝛼)
𝑷!! = 1/(𝑯!! + 𝛼)
𝑷!! = 1/(𝑯!! + 𝛼)

,
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!!!

  .                   (15) 
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Without rewriting the previous equations, eq. (15) can be directly 
substituted into the gradient equation. In the following, we will verify the 
method of this paper using the Sub-sag model and 2D BP gas chimney 
model. 

 
 

EXAMPLES 
 
In this paper, the correctness of the QEFWI method is tested using the 

Sub-sag model. The Sub-sag model (Fig. 1) size is 2000 m * 1000 m, space 
interval to 10 m. The source is the main frequency of 20 Hz Ricker wavelet, 
detector sampling interval is 1 ms, total sampling time of 1.20 s. 

 

 

 
 

Fig. 1. Sub-sag model: (a) Vp, Vs(b), Qp(c), Qs(d) 

 
 
In Fig. 2, the wave field of the viscoelastic medium exhibits a lower 

frequency as a result than the elastic wave field because the amplitude 
attenuation of the viscoelastic medium filters out the high-frequency 
components. In Fig. 3, the energy of a single-shot seismic record in a 
viscoelastic medium attenuates during propagation, but the position of the 
wave does not change, so there is only amplitude attenuation. This proves 
the correctness of the wave eq. (1). 
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Fig. 2. Snapshot of wave field at 300 ms: (a) ux component of elastic medium, (b) ux 
component of viscoelastic medium, (c) uz component of elastic medium, (d) uz 
component of viscoelastic medium. 

 

 

Fig. 3. Single-shot seismic records: (a) elastic medium ux component, (b) viscoelastic 
medium ux component, (c) elastic medium uz component, (d) viscoelastic medium uz 
component. 
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Fig. 4 shows the initial model used for the inversion. The update 
gradient of the full waveform inversion determines the results of the 
inversion, so we first compare the gradients. From Fig. 5, it can be obtained 
that the gradients of the four parameters match with the model, which 
proves the correctness of the gradient eqs. (11) and (12). 

 
 

 
 

Fig. 4. Initial model: (a) Vp, (b) Vs, (c) Qp, (d) Qs. 

  

 
 

Fig. 5. Gradients: (a) Vp, (b) Vs, (c) Qp, (d) Qs 
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Next, we compare the inversion results of the Sub-sag model. As can 
be seen from Fig. 6, when the subsurface medium is not complex and the 
initial model is good, we obtain better inversion results for the parameters. 
In summary, the back propagation wavefield equation and gradient equation 
we derived for the full waveform inversion of viscoelastic media based on 
the Kelvin-Voigt model are correct. 

 
 

 
 

Fig. 6. Inversion results: (a) Vp, (b) Vs, (c) Qp, (d) Qs 

 

In this paper, we test the effectiveness of the P-QEFWI method to 
suppress the gradient from falling into local convergence using a 2D BP gas 
chimney model. The top layer of the 2D BP gas chimney model (Fig. 7) has 
two low-velocity bodies with a size of 7,000 m * 3,200 m and a space 
interval of 10 m. The source is the main frequency of the 20 Hz Ricker 
wavelet, the detector sampling interval is 1 ms, and the total sampling time 
is 2.40 s. The initial model used for the inversion is shown in Fig. 8. 
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Fig. 7. 2D BP gas chimney model: (a) Vp, (b) Vs, (c) Qp, (d) Qs. 

 

 

 

Fig. 8. Initial model: (a) Vp, (b) Vs, (c) Qp, (d) Qs. 
 
In this paper, we first compare the inversion gradients of the 2D BP gas 

chimney model. From Fig. 9, we can know that the gradient without 
gradient preprocessing falls into local convergence, and the other subsurface 
media are difficult to get sufficient inversion. As can be seen from Fig. 10, 
the overall energy of the gradient after the gradient preprocessing is more 
average, and the other subsurface media are adequately inversion. The 
results of the gradient prove that the P-QEFWI method can suppress the 
local convergence that the gradient falls into due to the low velocity body. 
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Fig. 9. Gradient without gradient preprocessing: (a) Vp, (b) Vs, (c) Qp, (d) Qs. 

 

 

Fig. 10. Gradients after gradient preprocessing: (a) Vp, (b) Vs, (c) Qp, (d) Qs. 

 
We compared the inversion results of the 2D BP gas chimney model. 

As can be seen from Fig. 11, Vp and Vs of the QEFWI method obtain 
general inversion accuracy, while Qp and Qs inversions have no effect due 
to local convergence trapped at the low velocity body. All four parameters 
of the P-QEFWI method obtain high inversion accuracy without local 
convergence trapped at the low-velocity body. The inversion results prove 
that the P-QEFWI method can suppress the local convergence of the 
gradient caused by the low-velocity body and improve the inversion 
accuracy of the parameters. 
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In this paper, we next compare the single-line results at 3.5 km. From 
Figs. 12-15, it can be seen that the P-QEFWI method has a small 
improvement in the accuracy of Vp and Vs, and the P-QEFWI method has a 
larger improvement in the accuracy of Qp and Qs. Therefore, the 
information obtained from Figs. 11-15 is consistent, and the method can 
suppress the local convergence of the gradient caught by the low velocity 
body and improve the accuracy of the inversion results. 

 
 

 
 
 
Fig. 11. Inversion results without gradient preprocessing: (a) Vp, (c) Vs, (e) Qp, (g) Qs; 
Inversion results with gradient preprocessing: (b) Vp, (d) Vs, (f) Qp, (h) Qs. 
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Fig. 12. Vp single line comparison at 3.5 km. 

 

 
Fig. 13. Vs single line comparison at 3.5 km. 

 

 

Fig. 14. Qp single line comparison at 3.5 km. 
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Fig. 15. Qs single line comparison at 3.5 km. 
 
 
 
CONCLUSION 
 

In this paper, we derive the back-propagation wavefield formulation 
and gradient formulation for full waveform inversion in viscoelastic media 
based on the Kelvin-Voigt model, and prove the correctness of the gradient 
formulation and wavefield back-propagation formulation of the method. 
Meanwhile, in viscoelastic media, the low velocity causes the gradient of 
full waveform inversion to fall into local convergence. Therefore, this paper 
adds the pseudo-Hessian operator for gradient preprocessing and derives the 
gradient preprocessing formula for full waveform inversion in viscoelastic 
media based on gradient preprocessing, which solves the problem that the 
inversion gradient falls into local convergence. It is proven through 
examples that the method can solve the problem of inversion gradient 
falling into local convergence caused by low-velocity bodies in full 
waveform inversion of viscoelastic media, and improve the accuracy of 
parameter inversion results. 
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