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ABSTRACT 
 
Wang, Q., Yang, X.H., Tang, B., Liu, N.H. and Gao, J.H., 2023. Application of multi-
synchrosqueezed genaralized S-transform in seismic time-frequency analysis. Journal of 
Seismic Exploration, 32: 39-49   
 

Time-frequency (TF) analysis is an important tool in seismic data processing that 
describes the frequency response of subsurface rocks and reservoirs. In this paper, we 
propose a new TF method to characterize the time-varying feature of seismic signals, the 
proposed method is based on a generalized S-transform and employs a multi-
synchrosqueezing algorithm. The technique provides a highly energy-concentrated TF 
representation using a novel local estimation of instantaneous frequency. Synthetic and 
field data examples show that the proposed method has a superior performance in 
depicting strong time-varying signals and can be used to identify subtle stratigraphy with 
high resolution. 
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 INTRODUCTION   

Seismic data are nonstationary in nature and has varying frequency 
content as a function of time. TF spectral analysis (also called spectral 
decomposition) plays a significant role in seismic data processing by 
transforming seismic traces to spectral amplitudes as a function of time and 
frequency. In this way, TF spectral analysis  helps characterize frequency-
dependent responses of subsurface rocks and reservoirs (Sinha et al., 2005). 
For instance, seismic low-frequency amplitude shadows can be used as a 
hydrocarbon indicator when high-frequency components are absorbed by a 
reservoir (Ebrom, 2004). In addition, TF spectral analysis can also be use 
for noise suppression, attenuation measurement and pore-pressure 
prediction (Reine et al., 2009).  There are various TF methods for 
nonstationary signal analysis. Short-time Fourier transform (STFT) is one of 
the most commonly used approach and produces a TF spectrogram by 
applying the Fourier transform (FT) over a chosen time window. TF 
resolution of STFT is limited by the preselected window length. To 
overcome the limitations of STFT, the continuous wavelet transform (CWT) 
has been developed and is widely used in various engineering technology 
fields (Chakraborty and Okaya, 1995). However, the time-scale 
representation produced by CWT is not intuitive in seismic interpretation 
because the scale variable represents a frequency band. In recent years, the 
S transform (ST) (Stockwell et al., 1996) has become popular in seismic TF 
analysis due to its convenient computation via Fourier transform. The ST 
method can be considered as a hybrid of STFT and CWT. By employing a 
frequency-dependent Gaussian window, the ST provides a TF spectrum 
with multiresolution  while maintaining a direct relationship with the 
Fourier spectrum.  The ST also has the capacity of preserving phase 
information. Because of the uncertainty principle, the TF spectrum 
generated by these linear methods is often blurry, which makes it difficult to 
describe the time-varying features of a seismic signal accurately. 

 
 For quadratic methods, the Wigner-Ville distribution (WVD) (Jeffrey 

and William, 1999) is not affected by the uncertainty principle and can 
reduce  energy diffusion dramatically. However, the  cross-term involved in 
this procedure has no physical meaning restricts its application. To 
overcome these difficulties, a post-processing technique known as the 
reassignment (RM) algorithm (Auger and Flandrin, 1995) was proposed to 
improve the readability of TF representation (TFR). RM transfers the TF 
coefficients from their original position, to the center of gravity of energy 
distribution, to reduce energy confusion. However, the RM does not have 
the ability for signal reconstruction. The synchrosqueezing transform (SST) 
(Daubechies et al., 2011), originally introduced in audio signal analysis,  is a 
promising tool for TF analysis. It captures the philosophy of the empirical 
mode decomposition (EMD) (Huang et al, 1998) and sharpens the TF 
spectrum by squeezing the coefficients along the frequency axis. A 
generalized synchrosqueezing transform (GSST) (Li and Liang, 2012) and 
synchrosqueezing short-time Fourier transform (FSST) (Oberlin et al., 2014) 
have been put forward, respectively. Huang et al. (2016) proposed the 
synchrosqueezing S-transform (SSST) for seismic spectral decomposition 
and Wang et al. (2018) proposed the synchrosqueezing generalized S-
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transform (SSGST), which inherits the advantages of SST and generalized S 
transform (GST). Compared with the SST based on STFT and CWT, the 
SSGST better reflects the TF characteristics of weak-amplitude and high-
frequency data which is significant for hydrocarbon reservoir detection. It 
has been proved that the SST-based methods can provide an ideal TFR 
when addressing weak frequency modulation signal. However, most real 
signal, such as gravitational waves, speech, or seismic signal, are made up 
of strong frequency-modulated modes. To address this, the multi-
synchrosqueezing transform (MSST) (Yu et al. 2019) was developed to 
extract more prominent features of a non-stationary signal. The MSST can 
be considered as an iterative SST procedure that reassigns the time-
frequency coefficients to improve the energy concentration. The original 
MSST is based on the STFT, and the time-frequency resolution in seismic 
data analysis is fixed once the window length is preselected. Also low-
amplitude and high-frequency features of seismic signals are not  visible in  
MSST results. 

 
Inspired by the MSST and GST procedure, we developed a new TF 

analysis method that was termed as MSST-GST. The MSST-GST is an 
extension of GST equipped with a multi-synchrosqueezing technique. In the 
GST, we employ a frequency-dependent Gaussian window with three 
parameters. The parameters can be adjusted adaptively to match the seismic 
signal in certain kinds of situations, which could provide an adaptive TF 
result and facilitate further interpretation. In the following section, we 
introduce the theory of MSST-GST in detail, then numerical examples are 
employed to illustrate the superior performance of MSST-GST over the ST-
based and GST-based SST methods. Finally, field data applications further 
demonstrate the effectiveness of MSST-GST in highlighting geologic and 
stratigraphic information. 

 
 
SYNCHROSQUEEZING GENERALIZED S TRANSFORM 
 

  2( , ) ( ) ( , )e i f
xST t f x h t f dπ ττ τ τ

+∞ −

−∞
= −∫    ,                                      (1) 

 
where t and f are time and frequency, respectively, τ  denotes the time shift 
and ( , )h t f is a frequency-dependent Gaussian window 
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 The inverse transform of ST is obtained by 
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The ST can perform a multiresolution analysis as the window changes 

with increasing frequency, but the fixed window shape leads to a poor time 
resolution at low frequencies. In order to achieve a flexible TFR to 
characterize seismic features, the Gaussian window ( , )h t f  can be 
generalized as 

  

    

2 2( , )
2( , )( , , P)

2

t f Pf Ph t f e
σσ

π

−
=       ,                                   (4) 

 
where P represents the set of parameters and ( , )f Pσ  is the standard 
deviation of the generalized Gaussian window. In this work, the ( , )f Pσ  is 
defined as  

 ( ,{ , , })=
sf k s m k f mσ +                                                (5) 

 
where 0, 0,k s> >  and 0m > , k is the width factor which adjusts the width of 
the Gaussian window, m  controls the tradeoff between the STFT and the ST, 
and s  defines the change rate of window width with respect to frequency. 
The parameter set P are adaptively tuned to adjust the energy concentration 
of the TF result. The Renyi entropy (RE) was introduced to measure the 
energy concentration of the TFR, and the RE with α order is defined as 
  

2

2 2

( , )
1 log
1 ( ( , ) )

I

I

TFR t f dtdf
RE

TFR t f dtdf

α

αα
=

−

∫∫

∫∫
                                (6) 

 
where =(0,+ ) (0,+ )I ∞ × ∞： . It is well known that: the smaller the RE is, the 
more energy-concentrated the TFR is. In real application, the optimal 
parameters set *P  can be obtained by solving  
 

  * argmin
P

P RE=       ,                                    (7) 
 
using a cooperative coevolutionary differential evolution algorithm (Wang 
et al. 2018). Therefore, the GST can be expressed as 
  

2( , ) ( ) ( , , )e i f
xGST t f x h t f P dπ ττ τ τ

+∞ −

−∞
= −∫ .                             (8) 

 
 According to the Parseval theorem, the GST can be rewritten in 
frequency domain as 
  

      

2 2

2
2
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−
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where X  is the Fourier transform (FT) of signal ( )x t and α  is additional 
frequency variable. In order to calculate the instantaneous frequency 
function in SST, we consider a harmonic signal  02( )=A i f th t e π , the FT of ( )h t  
is given as 

0H( ) A ( )fα δ α= −                                                (10) 
 
where δ denotes the Dirac delta function. Then the GST of harmonic signal 
( )h t  can be obtained by substituting eq. (10) into eq. (9) 

 
2 2

0
2

0

2 ( )
2 ( )( ,P)( , ) e e

f f
i f f tf

xGST t f A
π

πσ

− −

−=                                      (11) 
 
According to eq. (11), the instantaneous frequency of the harmonic 

signal ( )h t  can be computed by taking  first order derivative of GST with 
respect to  variable t 

 
( , )( , ) +

2 ( , )
t

x
t

GST t ft f f
i GST t f

ω
π
∂

=
∂       .                                (12) 

 
 
Therefore, according the theories of SST, the synchrosqueezing generalized 
S-transform (SSGST) can be defined as 
 ˆ ˆ( , ) ( , ) ( ( , ) )x xT t f GST t f t f f dfδ ω

+∞

−∞
= −∫ .                             (13) 

 
Eq. (13) denotes that the time-frequency coefficients with the same 

instantaneous frequency ( , )x t fω  are superimposed on the frequency f̂ , so 
that we can obtain a sharp time-frequency representation. 

 
 

MULTI-SYNCHROSQUEEZIN GENERALIZED S-TRANSFORM 
  
In order to generate an energy-concentrated TF representation, the 

SST-based method assumes that the analyzed signal should be slowly time-
varying. In real application, most signals are made up of strong frequency-
modulated modes, as for instance, signals involved in speech processing, 
radar, or gravitational waves.  The SST-based methods can not provide an 
accurate estimation of the instantaneous frequency in the analysis of signal 
that has strong frequency-modulated modes. To address this issue, the 
MSST was introduced to narrow the error between the true instantaneous 
frequency and the calculated instantaneous frequency by executing the 
synchrosqueezing operator multiple times, which lead to a more 
concentrated TF representation. The original MSST was proposed in the 
framework of STFT, and inspired by this, we integrated the generalized S-
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transform (GST) into the MSST as a new method. We rewrite the 
formulation of SSGST as follows: 

 

     [1] ˆ ˆ( , ) ( , ) ( ( , ) )x xT t f GST t f t f f dfδ ω
+∞

−∞
= −∫                        (14) 

 
where the superscript of ˆ( , )xT t f  represents the time of synchrosqueezing 
operator. After executing the synchrosqueezing operator twice, the second-
order MSST-GST can be expressed as 
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           (15) 

 
 
 In eq. (15), the second-order MSST-GST makes use of a new 
instantaneous frequency function ( , ( , ))x xt t fω ω  to reassign the TF 
coefficients of GST. The ( , ( , ))x xt t fω ω  is closer to the true instantaneous 
frequency of signal than is the ( , )x t fω , which causes the second-order 
MSST-GST to produce a more concentrated result. Following this logic, the 
Nth-order of MSST-GST can be defined as 
 

       

[N] [N-1]

[N]

ˆ ˆ( , ) ( , ) ( ( , ) )

ˆ              = ( , ) ( ( , ) )

ˆ              = ( , ) ( ( , ( , ( ( , )))) )
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−∞

+∞

−∞
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−∞

= −

−

−

∫

∫

∫ L， ，
 (16) 

 
 We can see that, the MSST-GST constructs a new instantaneous 
frequency estimate that reassigns the smeared result, and the instantaneous 
frequency estimate becomes closer and closer to the true instantaneous 
frequency. Therefore, the energy of the TF result will be concentrated in a 
stepwise manner. 
 

The optimal TF resolution is not always required in seismic exploration. 
For instance, a better time localization is necessary in thin-bed detection and 
a better frequency resolution is required when estimating the tuning 
thickness of fluvial channels. Therefore, the proposed MSST-GST is 
suitable for different geologic goals. 
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NUMERICAL EXAMPLES 

 
In this section, we compare the performance of MSST-GST and other 

existing methods. First, a test signal is employed to investigate the 
effectiveness of the proposed method 

 
3(t 0.2)( ) sin(2 (280 2 sin(15 (t 0.2)) sint))x t t eπ π− −= − − +   .            (17) 

 
 The time sampling interval is 2 ms. The TFRs generated by the GST 
and the MSST-GST are shown in Fig. 1(a-h), and the local zooms are 
displayed in the right side. In this experiment, the optimized parameter set P 
selected in the GST and MSST-GST  is }{* 0.6, 0.8, 9.2P k s m= = =： . We can 
see the GST result, the TF spectrum illustrates a smearing result due to the 
uncertainty principle. In the SSGST result, the energy concentration is 
obviously improved. However, the energy leakage still exists because it 
cannot provide an accurate IF estimation when the signal has a strong FM 
behavior. For comparison, the TF features generated by second-order 
MSST-GST and fourth-order MSST-GST are clearer than that of ST and 
SSGST. Besides, the TF spectrum gets more and more concentrated as the 
increase of iterations. 
 

   A 3D field data is then used to investigate the application of the MSST-
GST in seismic exploration. This is a 3D seismic data from the Bohai Basin 
in China, also analyzed by Wang and Gao (2014) and Liu et al. (2017). It 
contains 800 in-lines and 600 cross-lines. Each trace has 700 samples with a 
sampling interval of 2 ms. In this exploration area, the reservoir is mainly 
controlled by shallow-water deltaic systems and fluvial channels. 
Visualizing constant-frequency horizon slices of 3D data is a powerful tool 
to identify geologic structure that could be hidden in the original horizon 
amplitude map. Fig. 2(a) shows a time slice at 1220 ms of the 3D seismic 
cube which contains many fluvial channels, from the point of view of 
interpreter, knowing the extension and boundary of channels is important 
for reservoir characterization (Sinha et al., 2005). We apply the ST, SSGST, 
and fourth-order MSST-GST to all traces and compute the frequency where 
the cumulative spectral energy is 80 percent of the total energy. Time slices 
at 1220 ms are extracted after calculating constant frequency cubes. 

  
  Figs. 2(b)-2(d) show the resulting time slices for ST, SSGST, and 

fourth-order MSST-GST at 35 Hz, respectively. The channels are more 
sharply represented by SSGST and fourth-order MSST-GST than in the ST 
maps. SSGST and fourth-order MSST-GST have similar performances, 
however, the amplitude variations are better resolved in the fourth order 
MSST-GST due to the significantly reduced frequency smearing than for 
the SSGST methods (indicated by green rectangle). 
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Fig. 1. Synthetic example. Time-frequency representations produced by (a) ST result, 

(b) the local zoom on ST result, (c) SSST result, (d) local zoom on SSST result, (e) 
second-order MSST-GST result, (f) local zoom on second-order MSST-GST result, (g) 
fourth-order MSST-GST result, (h) local zoom on fourth-order MSST-GST result. 
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To further demonstrate the performance of the MSST-GST method, we 

compare the decomposed frequency components on a 2D section with Inline 
number 1290 which is indicated by red line in Fig. 2. Fig. 3(a) shows the 
seismic section, we apply the three methods mentioned above to all traces 
and calculate the frequency where the cumulative spectral energy is at 80 
percent of the total energy. We select the 2350th trace to optimize the 
parameters and the result is }{ 0.78, 1.05, 3.7P k s m= = =： . The 35-Hz 
constant frequency slices computed by ST, SSGST and fourth order MSST-
GST are displayed in Figs. 3(b)-3(d). The black arrows with labels C1, C2 
and C3 indicate three distinct channels which are indicated by yellow 
arrows in Fig. 2. In Fig. 3, the black curves are the gamma curves which 
demonstrate that the depositional settings of the primary reservoirs are 
dominated by the stacked fluvial channels and delta systems in several 
depositional cycles. In Fig. 3(b), the channel feathers are smeared which 
make the further interpretation difficult. In Fig.  3(c), due to its improved TF 
resolution, we can find that the SSGST highlights the channels. Compare 
with ST and SSGST, the result of fourth order MSST-GST characterizes the 
edges and the extension of the channels more clearly, which demonstrate 
that the MSST-GST can depict the geological structure with higher 
precision. 

 

Fig. 2. Channel detection from horizontal slices. (a) Amplitude slice of the 3D original 
data. 35-Hz time slices computed using the (b) ST, (c) SSGST, (d) fourth order MSST-
GST, respectively. Result based on fourth-order MSST-GST reveals more distinct 
channel features (indicated by the green rectangle), thus facilitating further 
interpretation. 
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Fig. 3. Constant frequency spectral decomposition results of Inline1290. (a) The 2D 
seismic data at Inline 1290.  35-Hz  spectral decomposition results calculated using the 
(b) ST (c) SSGST, and (d) fourth-order MSST-GST. 
 
 
 CONCLUSION 

 
A more energy-concentrated time-frequency representation is 

significant for characterizing time-varying features of a seismic signal. In 
this paper, a new multi-synchrosqueezing algorithm, based on generalized 
S-transform, namely the MSST-GST method, is proposed for seismic time-
frequency analysis. In the MSST-GST method, an iterative reassignment 
procedure is used to improve the instantaneous frequency estimation and the 
energy concentration of the time-frequency representation. The advantages 
of the MSST-GST are demonstrated through numerical examples and the 
effectiveness of the MSST-GST for geological structure depiction is 
confirmed by real data applications. 
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