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ABSTRACT 
 
Ji, M., Zhao, X.Y., Zhu, W., You, Y.C., Zhang, J.F., Shang, M., Chuai, X., Xue, 
Y., Lian, C.H. and Chen, W., 2023. Noise attenuation using adaptive wavelet 
threshold based on CEEMD in f-x domain. Journal of Seismic Exploration, 32: 131-153. 
 
 Noise attenuation plays an important role in seismic signal processing. 
Complementary Ensemble Empirical Mode Decomposition (CEEMD) is a classic 
algorithm for signal decomposition and is usually used for denoising. This algorithm 
is used to attenuate random noise by removing some high-frequency intrinsic mode 
functions (IMFs), apparently resulting in insufficient noise attenuation and loss of 
effective signal. Wavelet threshold denoising can be used to attenuate the useless part 
and enhance the useful part of the signal by selecting the appropriate threshold. 
Wavelet threshold denoising is often combined with CEEMD in time domain to 
achieve relatively good effects, but some of signal between seismic traces are 
fragmented. This paper proposes improved adaptive wavelet threshold denoising 
based on CEEMD in f-x domain. The new threshold function we proposed is 
constructed on the basis of the traditional soft and hard threshold functions, which 
overcomes the constant deviation and avoids the phase step phenomenon. The 
processing results for simulated and field data show that the proposed method has 
better attenuation effect on random noise than traditional methods. 
 
KEY WORDS: complementary ensemble empirical mode decomposition,
       intrinsic mode function (IMF), adaptive wavelet threshold. 
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INTRODUCTION 
 
         In seismic exploration, the acquisition of seismic data always suffers 
from a large amount of random noise (Huang et al., 2016; Li et al., 2016). 
Random noise is a kind of interference wave without certain frequency, 
especially with a tremendous change in the main frequency range (Lin et 
al., 2015; Chen et al., 2017). Time-frequency analysis is the main method 
to analyze and process seismic data with random noise (Liu et al., 2012; 
Liu and Chen, 2013). The Short-Time Fourier Transform (STFT) is a 
simple time-frequency analysis method of signal. Window function is used 
in STFT to analyze the signal in the time domain. However, the time 
window is fixed so that it is difficult to take into account time and frequency 
simultaneously (Griffin and Jae, 1984). Continuous Wavelet Transform 
(CWT) is a linear time-frequency analysis method. Time window is also 
used in CWT, but it is different from STFT because the window scale of 
CWT is variable. So the time-frequency resolution of CWT is better 
than that of STFT (Medl, 1998), but the wavelet basis of CWT is 
difficult to select. Subsequently, S-transform was proposed on the basis of 
STFT and CWT to solve the problems of the above two time-frequency 
analysis methods (Stockwell and Mansinha, 1996). Its time window can 
vary with frequency and its window width can narrow at high frequencies 
and widen at low frequencies (Liu and Chen, 2019). Although the size of 
the window function is variable, the shape of the window function is 
limited by Heisenbergs uncertainty principle (Liu et al., 2011; Ouadfeul 
and Aliouane, 2014). The above-mentioned time-frequency analysis 
methods used to be the mainstream of seismic spectrum analysis, but those 
methods cannot achieve good results when analyzing nonlinear and non-
stationary signals, such as seismic signal (Fomel, 2008). 
  
          Empirical Mode Decomposition (EMD) was proposed by Huang et 
al. (1998). EMD is an adaptive time-frequency analysis method, and 
decomposes the signal into intrinsic mode functions (IMFs) with 
frequency from high to low.Because random noise is generally a kind of 
high-frequency signal, high-frequency IMF1 or IMF1 and IMF2 can be 
subjectively removed (Chen et al., 2015; Chen and Fomel, 2018). 
However, modal mixing may occur when using EMD method. Modal mixing 
means that the waveforms of adjacent IMFs are always mixed, so it is 
difficult to make effective judgment during denoising (Chen and Ma, 
2014). Aiming at the modal mixing phenomenon, Wu et al. proposed the 
Ensemble Empirical Mode Decomposition (EEMD) (Wu and Huang, 2009). 
According to the uniform distribution of white noise, EEMD can be used to 
separate signals with different frequencies, which can solve the problem of 
mode mixing (Han and Mirko, 2015). EEMD is used to solve the modal 
mixing phenomenon of EMD effectively, but it causes more errors and 
increases the amount of calculation due to the addition of a large amount 
of white noise. CEEMD was proposed in view of the shortcomings of the 
EMD and EEMD (Chen et al., 2017). CEEMD is characterized by 
adding positive and negative white noise to the signal, which solves 
the problems of EMD and CEEMD. The positive and negative white 
noises can cancel each other out to reduce errors. Experiments show that 
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CEEMD has better separation effect of modal mixing and the 
reconstruction of the original signal is more accurate (Colominas et al., 
2014; Sun et al., 2020). 
 
       The wavelet threshold is a conventional method to attenuate noise 
(Morlet et al., 1982; Hess and Wickerhauser, 1996; Zhang et al., 
2001). Wavelet coefficients of effective signal and noise have different 
performances. Wavelet threshold method is used to process those wavelet 
coefficients through a threshold function to obtain new coefficients. 
Finally, reconstructing those coefficients by inversing wavelet transform 
to obtain the denoised signal (Zhu et al., 1997; Chakraborty and Okaya, 
1995; Zhang and Ulrych, 2003). The selection of threshold and 
threshold function is the key of the wavelet threshold denoising (Qu et 
al., 2016). Using global threshold can effectively attenuate noise, but it 
removes a large number of useful signals (Xu et al., 2011; Wang et al., 
2015. The problem with traditional soft threshold function is constant 
deviation that the reconstructed wavelet coefficients cannot completely 
represent original signal. The step phenomenon exists in the traditional 
hard threshold function and causes a big error to the result (Liu et al., 
2016). Aiming at the problems of soft and hard threshold function in 
processing wavelet coefficients, we improved the new threshold function 
on the basis of the soft threshold function. The new wavelet threshold 
function overcomes the problems of the traditional threshold function. 
The processed wavelet coefficients can recover the signal to a greater 
extent and filter the noise effectively. The effect of wavelet threshold 
denoising is greatly improved. 
 
         In order to achieve better denoising ability of CEEMD, wavelet 
threshold denoising method based on CEEMD was proposed. In this 
method, CEEMD is used to decompose the noise signal. The normalized 
autocorrelation function is used to analyze the autocorrelation 
coefficient of the noise signal. The IMFs dominated by noise are found 
through analysis, and then wavelet threshold denoising is performed on 
these IMFs. All IMFs and residual components are integrated to obtain 
the denoised seismic signal. It is further demonstrated that this method 
has better effect in seismic noise attenuation by comparing with several 
other conventional methods. 
 
       Although the adaptive wavelet threshold based on CEEMD can 
attenuate random noise, some signals between seismic traces are 
fragmented. We also tested CEEMD in frequency domain, but some 
effective signals of the in-phase axis with large tilt angle are lost during 
attenuating random noise. So we propose combining CEEMD with the 
improved wavelet threshold in f-x domain on the basis of the original 
algorithm. First, the original signal is divided into real and imaginary 
parts in the frequency domain, and each part is decomposed by 
CEEMD separately. Then the wavelet threshold denoising is performed 
on the IMF dominated by noise. Finally, the real and imaginary parts are 
combined and the signal is transformed from the frequency domain back 
to the time domain. Experiments show that denoising effect doesn’t 
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change with different tilt angles of the in-phase axis. The signal 
processing between the seismic traces and the resolution of the seismic 
data are further improved, and the loss of effective signal is reduced. The 
proposed method is compared with the other methods, which further 
illustrates the performance of the proposed method in noise attenuation. 
 
 
COMPLEMENTARY ENSEMBLE EMPIRICAL MODE 
DECOMPOSITION 
        
        The CEEMD is improved on the basis of EMD and EEMD. EEMD 
and CEEMD were proposed to solve the problem of modal mixing in 
EMD. These two methods are used to change the distribution of extreme 
points by noise assistance. CEEMD retains the completeness of the EMD 
algorithm, and effectively alleviates the error in EEMD caused by adding 
a lot of white noises. Using CEEMD can relatively save computing 
time and ensure the accuracy of each IMF, which benefits to the 
subsequent signal reconstruction. The steps for CEEMD decomposition 
are as follows: 
 
1) by adding positive and negative pairs of N groups Gaussian white 
noises 𝑛!!(t) and 𝑛!!(t) to the original seismic signal s(t), 2N signals 𝑛!,!(t) 
and 𝑛!,!(t) containing positive and negative white noises are obtained: 

    𝑛!,!(𝑡)=𝑠(𝑡)+𝑛!!(𝑡)     ,                                              (1)                                                           

𝑛!,!(𝑡)=𝑠(𝑡)+𝑛!!(𝑡)     .                                                 (2) 
 

2) perform EMD decomposition on signal 𝑛!,!(t) and signal 𝑛!,!(t) to 
obtain two sets of IMFs and the remaining components r!! and r!! , then: 
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3)  the two sets of IMFs are accumulated and averaged to obtain the 
corresponding IMFs, then the j-th IMF and the remaining component of 
the original signal can be expressed as 
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The high-frequency IMF1 or IMF1 and IMF2 are generally 

discarded in the CEEMD method, and the other IMFs and the 
remaining component are accumulated to obtain the denoised signal. 
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WAVELET THRESHOLDING DENOISING 
 
Basic principles 
 
       Wavelet transform is a linear transform method that analyzes the 
signal segmentally by adding a variable time window. Wave transform is 
often used in signal processing and has the characteristics of multi-
scale, low entropy and de-correlation. The wavelet threshold denoising is 
an application of wavelet transform. The basic principles of traditional 
wavelet threshold denoising are as follows: 
 
1) A set of wavelet decomposition coefficients 𝜔!,!  is obtained by 
applying wavelet transform to the original signal s(t). 
 

         
))((, tsWkg =ω      ,                                                               (7) 

 
where 𝑊(∙) is the wavelet transform; g is the decomposition level; k is 
the parameter of translation operation in wavelet transform. 
 
2)  A set appropriate threshold and threshold function. If  𝜔!,! < 𝜆, then 
the coefficient is the high-frequency noise coefficient, and the coefficient 
is directly removed; if 𝜔!,! ≥ 𝜆, the coefficient is the low-frequency 
effective signal coefficient, and the coefficient needs to be retained. The 
traditional soft and hard threshold functions are shown in 
formulas (8) and (9): 
 

𝜔!,! =
𝑠𝑔𝑛(𝜔!,!)(|𝜔!,!| − 𝜆), |𝜔!,!| ≥ 𝜆
0,                                        |𝜔!,!| < 𝜆     , (8)            (8) 

 

𝜔!,!=
𝜔!,!    |𝜔!,!|≥𝜆
0         |𝜔!,!|<𝜆

     . (9)             (9) 

 
3) Perform inverse wavelet transform on the processed coefficients to 
reconstruct the denoised signal. 
 
      The key to wavelet threshold denoising is the selection of threshold 
and threshold function. In wavelet transform, the coefficient 
corresponding to effective signal is large, while the coefficient 
corresponding to noise is small. If the selected threshold is too large, 
the effective signal will be lost. If the threshold is too small, it will 
cause insufficient denoising. Therefore, whether the appropriate 
threshold is chosen has a great influence on the denoising effect. 
Traditional wavelet threshold can be roughly divided into global fixed 
threshold and local adaptive threshold. Global threshold means that the 
same threshold is used in wavelet threshold denoising. Local adaptive 
threshold can generate different thresholds according to different layers 
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 ̂
 

and directions of decomposition. Because the seismic signal is nonlinear 
and nonstationary, using global fixed threshold may cause the loss of 
effective signal or the inability to attenuate noise clearly. Therefore, 
this paper uses adaptive threshold, its expression is as follows: 

 
2ln( )N
g

σ
λ =

     ,                                                                              (10)     
 (10) 

where σ is the noise variance, the calculation method is: 
 

,(| |)
0.6745

g kmedian W
σ =

       .                                                                   (11) 

 𝜔!,! is the wavelet decomposition coefficient; N is the length of each 
layer of wavelet coefficients; g is the layer number of wavelet    
decomposition.

  
 

       
 (11)𝜔!,! is the wavelet decomposition coefficient; N is the length of each layer of wavelet coefficients; g is the layer number of wavelet decomposition 

In order to solve the constant deviation of soft threshold function and 
avoid the phase step phenomenon of hard threshold function, this paper 
constructs a new threshold function. The new threshold function has the 
following characteristics: 

 
1. the function is continuous at |𝜔!,!| = 𝜆; 

 
2. when |𝜔!,!|→∞, 𝜔!,!→𝜔!,!. 

 
According to the above characteristics, the mathematical expression 

of the threshold function is: 
 

                        (12)
    

 
The mathematical analysis of this function is as follows:  

 
a) Continuity of 𝜔!,!: while 𝜔!,!→𝜆!, the right limit is  
lim!!,!→!! 𝜔!,! = 0; while 𝜔!,!→𝜆!, the left limit is  
lim!!,!→!!𝜔!,! =0. So the value of the new threshold function at 
𝜔!,! = 𝜆 is: 

𝜔!,!(𝜆) = 𝑠𝑔𝑛(𝜆)(|𝜆|−
!

!"#( !!!!!)
) = 0    .                              (13) 
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It can be seen from the above analysis that 𝜔!,! is continuous when 
𝜔!,! → 𝜆, so as to avoid the phase step phenomenon.  

 
b) Asymptotic property of 𝜔!,!: while 𝜔!,! →∞, 
 

                                                                                                       
                                                                                                                     (14)

         (14)
 

           
           

                    
                                                                                                    (15) 

 
   According to the above derivation, the asymptote of the new 

threshold function is 𝜔!,! = 𝜔!,!. The new threshold function solves 
the problem of constant deviation of the soft threshold function. 

 
    Draw the curve of the soft and hard threshold functions and the 

new threshold function. As shown in Fig. 1, the problems of the 
traditional threshold functions are solved by the new threshold 
function. 

 
 

 
Fig. 1. Traditional threshold functions and new threshold function.
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ADAPTIVE WAVELET THRESHOLD DENOISING 
BASED ON CEEMD 
	
Basic Principles 

 
By analyzing the problems of the traditional methods, adaptive 

wavelet threshold denoising based on CEEMD is mainly improved 
from two aspects: 

 
1. One is how to select the IMFs which dominated by noise; 
2. The other is to select the threshold and threshold function. 

 
    For the first aspect, the theory of normalized autocorrelation 

function is introduced. The normalized autocorrelation function of the 
noise-dominated IMF gets the maximum value and appears as a sharp 
pulse at the zero point. While the value of other points decrease rapidly 
due to the weak correlation. The the normalized autocorrelation 
function of IMF dominated by effective signal also has a maximum 
value at the zero point, but it does not decay rapidly at other points due 
to the strong correlation between the signals. Fig. 2 is a signal 
dominated by noise and its normalized autocorrelation function. Fig. 3 
is a signal dominated by effective signal and its normalized 
autocorrelation function. The difference between the two signals can 
be clearly seen from the two figures. 

 
    The second aspect includes the selection of threshold and threshold 

function. An appropriate threshold can minimize the problems of 
incomplete denoising or excessive denoising. A suitable threshold 
function can make the result smoother and clearer. This paper constructs 
a new threshold function to solve the problems of soft and hard 
threshold functions. Compared with traditional soft and hard threshold 
functions, using the new threshold function will not lead to phase step 
phenomenon and constant deviation problem. 

 

 
Fig. 2. Signal dominated by noise and its normalized autocorrelation function curve. 
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Fig. 3. Signal dominated by effective signal and its normalized autocorrelation 
function curve. 
 

 
       According to the characteristics of the normalized autocorrelation 
function of the above two signals.  Draw the  normalize  autocorrelation 
functions of all IMFs decomposed by CEEMD, and select the IMFs 
dominated by noise. The processes of adaptive wavelet threshold based 
on CEEMD are: 
 

1. Decompose the original signal s(t) by CEEMD to obtain the    
IMFs with frequency from high to low; 

 2. Draw the normalized autocorrelation function of each IMF and 
select the IMFs that dominated by noise; 

 3. Denoising noise-dominated IMFs by adaptive wavelet threshold 
function; 

 4. The processed IMFs, the unprocessed IMFs and the remaining 
      component are reconstructed to obtain the denoised data. 
 

 
Normalized Autocorrelation Function Analysis 

 
Different dimension units are often used for different evaluation 

indexes. In order to eliminate the inconvenient influence of different 
dimensions on analysis, it is necessary to standardize the data. 
Normalization is to transform the data into a fixed interval range which 
is usually 0 to 1. The differences and influences caused by different 
sample data can be eliminated by normalization. The following formula 
is for normalizing the signal, 𝑥!"#$ is the normalized result, x is the 
original data set, 𝑥!"#  and 𝑥!"#  are the maximum and minimum 
values in the signal respectively. 
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    𝑥!"#$ = !!!!"#
!!"#!!!"#

       .                                                   (16)
      (16) 

The autocorrelation function is used to analyze the correlation of 
each data point of the signal. It also can be used to show the 
correlation of each value of a signal at different times, especially the 
correlation of some random sequences. The autocorrelation function of 
the signal at two different moments can be calculated from the 
following equation: 

 
    𝑅!(τ) = lim!→!

!
!

x(t)x(t+ τ)dt!
!     ,     (17) 

 
R represents the correlation between two points, x(t) is the signal to 
be analyzed, and τ is the interval between two time points of one 
signal.  

 
 

f-x CEEMD 
 
Basic principles 
 
          Compared with the effective seismic signal, the random noise has 
higher frequency and faster vibration. It is more intuitive and convenient 
to process the signal directly in the frequency domain. According to the 
frequency characteristics of random noise and effective signal, the IMFs 
are screened in f-x domain to achieve more accurate denoising effect. 
The steps of f-x CEEMD are as follows: 
 

1. Transform the noisy seismic signal from time domain to        
frequency domain by Fourier transform; 

 
2. Separating the real and imaginary parts of the data in the       

frequency domain; 
 
3. The real part of the signal was decomposed by CEEMD to 

obtain a series of IMFs corresponding to real part. The noise-
dominated IMFs were removed to obtain denoised data in real 
part; 

  
4.  Perform the same operation as in eq. (3) on the imaginary part 

of the signal; 
  
5.  Add the real and imaginary parts of denoised data to obtain the 

denoised data in frequency domain; 
   
6.  Transform data from frequency domain back to time domain; 
   
7.  Continue to do the same operation as above for the next time window 

until the operation of all window functions is completed. 
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Comparison of Denoising for Different Construction Types 
and Tendencies 
 
         The denoising ability of the proposed method is tested by using 
simulated data. The simulated data includes in-phase axis, intersections, 
breakpoints and faults. 50% white Gaussian noise was added to the 
simulated data, and the experimental results are shown in Fig. 4. Using 
f-x CEEMD can effectively attenuate the random noise of horizontal in-
phase axis, breakpoint and fault structure, and almost does not affect 
the continuity and resolution of in-phase axis. As shown in Fig. 4(c), 
the in-phase axis with small tilt angle is well preserved and the noise 
attenuation effect is significant. While the in-phase axis with large tilt 
angle is removed together with random noise. As shown by the four red 
arrows in Fig. 4, the inclined in-phase axis is attenuated by f-x 
CEEMD, but the data at the intersection point of the horizontal and 
inclined in-phase axis are not affected. It indicates that this method will 
not lose the information at the intersection point while attenuating the 
inclined in-phase axis with large inclination. It has a good protective 
effect on the effective signals except the inclined in-phase axis. 
	
	
	

                                      (a)          (b) 
    

    (c)           (d) 
         

 
 
Fig. 4. Simulation data denoising effect: (a) Clean data. (b) Noisy data.  
(c) Denoising by f-x CEEMD. (d)  Denoising residuals. 
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                         (a)        (b) 
 

     (c)             (d) 
 
Fig. 5. Simulation data denoising effect: (a) Clean data. (b) Noise data. 
(c) Denoised using f-x CEEMD. (d) Denoising residuals. 
 

 Other simulated experiments are carried out to verify the results. 
The same Ricker wavelet and seismic reflection coefficients are used to 
simulate the inclined in-phase axis with different tilt angles. The 
simulated data contains five inclined in-phase axis, and the tilt angles of 
the inclined in-phase axis increase successively from top to bottom. 
50% Gaussian random white noise was added in the simulated data. 
And f-x CEEMD was used to attenuate the random noise of the 
simulated data with different tilt angles. The processed results and 
residuals are shown in Figs. 5(c) and 5(d). It can be seen that the 
denoising effect of f-x CEEMD is very different for the in-phase axis 
with different tilt angles. Although the random noise is almost 
completely removed, the loss of effective signal is more serious for the 
in-phase axis with larger tilt angle. 

 
 In the above analysis, the loss of the in-phase axis with large tilt 

angle is serious when using f-x CEEMD. Is this situation related to the 
tilt direction of in-phase axis? To solve this problem, figure 6 shows 
five inclined in-phase axis with the same tilt angle and different tilt 
directions as shown in Fig. 5. 50% white Gaussian noise is also 
added to the simulated data. The denoising results obtained by using 
the f-x CEEMD are shown in Figs. 6(c) and 6(d). The in-phase axis 
with a large tilt angle still has a serious loss even if the tilt direction of 
the in-phase axis is changed. It is further shown that CEEMD produces 
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different denoising effects because of the different tilt angle of the in-
phase axis. This denoising characteristic has nothing to do with the 
noise intensity, structure type and tilt direction of the in-phase axis, but 
only with the tilt angle of the in-phase axis. The larger the tilt angle, the 
more effective signals of the in-phase axis are attenuated. 

 

        (a)                  (b) 
        
 

      (c)                (d) 
 
 
Fig. 6. Simulation data denoising effect: (a) Clean data. (b) Noise data. (c) f-x 
CEEMD. (d) Denoising residuals. 
 
 
ADAPTIVE WAVELET THRESHOLD DENOISING 
BASED ON CEEMD IN F-X           DOMAIN 

 
 When CEEMD and adaptive wavelet threshold are combined in 

f-x domain, the original signal is firstly divided into real part and 
imaginary part in frequency domain. Each part is decomposed by 
CEEMD, and then the noise-dominated IMFs are denoised by wavelet 
threshold. Finally, the real and imaginary parts are merged to 
transform the signal from frequency domain back to time domain. This 
section is mainly to further explore the denoising effect of the new 
threshold function combined with CEEMD in f-x domain. Similar to 
wavelet threshold based on CEEMD in time domain, autocorrelation 
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function analysis and wavelet threshold denoising are also added after 
CEEMD decomposition. The specific denoising steps are as follows: 

 
(i) Transform the signal from the time domain to the frequency   

domain using the Fourier transform. 
(ii) Decompose the signal into real and imaginary parts in the 

frequency domain, and perform CEEMD decom-position on the 
real and imaginary parts respectively; 

(iii) Perform normalized autocorrelation analysis function on the 
 decomposed IMFs to find out the IMFs domi- nated by noise; 

(iv) Perform wavelet threshold denoising on the noise-dominated 
IMFs ; 

(v) Reconstruct all processed and unprocessed IMFs in the real and 
imaginary parts of the signal; 

(vi) Add the real part and the imaginary part to obtain the denoised 
data in the frequency domain; 

(vii) Transform the data from the frequency domain back to the time 
 domain using the inverse of the Fourier  transform. 

 
 
 

NUMERICAL SIMULATION EXPERIMENT 
 
 The proposed method is tested using the simulated data in Fig. 7. 

The simulated data in this section have one more anticline structure than 
the simulated data in Fig. 4. The angle of each point on the in-phase 
axis of anticline structure is different. Add 50% white Gaussian noise to 
the clean data, and the Signal-to-Noise Ratio (SNR) of the data is 
3.5403dB. The mathematical expression of SNR is: 

 
SNR=10 lg(!!

!!
)     ,                                                           (18) 

 
PS is the effective power of the signal, PN is the effective power of the 
noise. 
       

   (a)                   (b) 
 
Fig. 7. Synthetic data: (a) Clean data, (b) Noisy data. 
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 The proposed method is compared with the other two methods. 
The experimental results are shown in Fig. 8. Using the proposed 
method and f-x CEEMD can effectively attenuate the random noise in 
the simulated seismic data, and achieve good denoising effects. Although 
f-x CEEMD can be used to attenuate the random noise in the seismic 
data well, it obviously attenuates the effective signal of the inclined in-
phase axis. 
            
 

 
  (a)     (b)        (c) 
 
Fig. 8. Denoising of synthetic data: (a) improved wavelet threshold based on 
CEEMD, (b) f-x CEEMD, (c) the  proposed method. 
 
 
  
 Fig. 9 shows the denoising residuals of the simulated seismic data 
by three methods. Wavelet threshold based on CEEMD, f-x CEEMD 
and the proposed method have good attenuation effect on random 
noise. By calculating the SNR, the three methods increase the SNR of 
the simulated seismic data from 3.5403 dB to 9.3235 dB, 7.0631 dB, 
and 9.9731 dB, respectively. The method in this paper significantly 
improves the SNR of simulated data. Although the three methods can be 
used to remove random noise effectively, the inclined in-phase axis with 
large tilt angle are attenuated when using f-x CEEMD. The loss of 
effective signal is obvious in the large tilt at both ends of anticline. In 
contrast, using the proposed method does not lose the inclined in-phase 
axis with a large tilt angle like f-x CEEMD, and has a better ability to 
protect the effective signal. 
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         (a)    (b)       (c) 
 
Fig. 9. Denoising residuals:  (a) Improved wavelet threshold based on CEEMD, 
(b) f-x CEEMD, (c) Proposed  method. 
 
 
       Fig. 10 shows the F-K spectrum of the clean simulated data and 
the simulated data adding 50% Gaussian white noise. The energy of the 
added white noise is evenly distributed in the frequency range. Fig. 11 
shows the F-K spectrum of the simulated data after denoising by the 
three methods. It can be seen intuitively that the seismic data denoised 
by f-x CEEMD obviously lacks the energy of the inclined in-phase 
axis with large wave number. And the other two methods can 
effectively attenuate noise without causing loss of effective signal 
energy. 
 

      (a)                            (b) 
 
Fig. 10. The F-K spectrum. (a) Clean data. (b) Noisy data. 
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             (a)        (b)         (c) 
 
Fig. 11. The F-K spectrums after denoising by three methods: (a) Improved 
wavelet threshold based on CEEMD. (b) f-x CEEMD. (c) Proposed method. 
  
 
 Fig. 12 shows the comparison of the amplitude spectrum of clean 
data, noisy data, and the data after denoising by three methods. It can be 
seen from the figure that the added noise is mainly concentrated at 50-
150 Hz. Comparing the two figures, the amplitude of the simulated 
data denoised by f-x CEEMD is significantly reduced. It confirms the 
above conclusion once again that f-x CEEMD will cause the loss of 
effective signals. The other two methods can effectively remove high-
frequency random noise, and the amplitude of the effective signal 
distributed within 0-50 Hz has almost no change. These two methods can 
protect the effective signal well and reduce the interference of random 
noise greatly. 

 

                       (a)        (b)         (c) 
 
Fig. 12. Amplitude spectrum comparison: (a) Clean data and noisy data. (b) Noisy 
data denoised using the   three methods. (c) Proposed method. 
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 Fig. 13 shows the SNR of simulated data with different noise 
intensity after denoising by the three methods. According to the figure, 
SNR is relatively low when using f-x CEEMD due to the loss of 
effective signals. When the other two methods are used for denoising, 
the simulated data with different noise intensity can maintain a high 
SNR. The three methods can maintain the denoising performance when 
denoising the simulated data with different noise intensity. 
 
 

 
 
Fig. 13. Three methods denoised SNR at different noise strengths.   

 
 

 REAL SEISMIC DATA TEST     
 
 The experimental results of the simulated data show that the 

wavelet threshold based on CEEMD in time-spaece domain and in f-x 
domain have good ability in noise attenuation and protection of 
effective signal. The actual seismic data is shown in Fig. 14. The data 
contains a total of 201 traces, each trace has 1001 sampling points, and 
the sampling interval is 1 ms. It can be seen that the actual seismic data 
contains inclined in-phase axis, curved in-phase axis, faults and 
breakpoints. However, the actual data is seriously polluted by random 
noise, and the continuity and resolution of the in-phase axis are very 
low. 

 
Fig. 14. Field data. 
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        (a)            (b)    (c) 
 
Fig. 15. Denoising of field data: (a) Improved wavelet threshold based on 
CEEMD, (b) f-x CEEMD, (c) Proposed method. 
 
 

                  (a)     (b)        (c) 
    
Fig. 16. Denoising residuals: (a) Improved wavelet threshold based on CEEMD. 
(b) f-x CEEMD. (c) Proposed  method. 
 

 
  
The actual seismic data after denoising is shown in Fig. 15. The 

resolution of the seismic data has been significantly improved after 
denoising by three methods. However, the actual seismic data denoised 
by f-x CEEMD lacks a lot of effective signals. And the residual signal 
in Fig. 16 can show that f-x CEEMD removes random noise and also 
causes the absence of in-phase axis with tilt angle. Comparing the 
signals in the denoising residuals of the actual seismic data, most of 
these signals are in-phase axis with large tilt angles. In terms of 
denoising effect, the resolution of seismic data after denoising by the 
proposed method is relatively higher. The proposed method runs 
directly in the frequency domain, which can take into account more 
details to achieve better denoising effect. Although the adaptive wavelet 
threshold based on CEEMD can be used to attenuate random noise, some 
signals between the seismic traces are fragmented. 
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Fig. 17. Part of the field data. 
   

        (a)             (b)                        (c) 
 
Fig. 18. Denoising of part of field data: (a) Improved wavelet threshold based on 
CEEMD. (b) CEEMD in f-x domain. (c) Proposed method. 
 
 

 In order to deeply compare the denoising effect of the three 
methods as much as possible, we intercept a local real seismic area from 
0 ms to 500 ms, 0-th trace to 100-th trace. Each trace includes 500 
sampling points and the sampling interval is 1 ms, as shown in Fig. 17. 
The seismic data processed by wavelet threshold based on CEEMD still 
contain obvious noise, and the continuity of the seismic tectonic axis is 
not strong. The proposed method and f-x CEEMD have relatively better 
denoising effects from Fig. 18. Comparing the denoising residuals for the 
three methods in Fig. 19, a lot of effective signals with tilt angle were 
removed when using f-x CEEMD. 
 
 

              (a)            (b)                        (c) 
 
Fig. 19. Removed noise: (a) Improved wavelet threshold based on CEEMD.  
(b) CEEMD in f-x domain. (c)   Proposed method. 
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DISCUSSIONS 
 

   This paper mainly analyzes the ability of three methods to attenuate 
the random noise. Experiments show that adaptive wavelet threshold 
based on CEEMD can be used to attenuate random noise, but some 
signals between seismic traces are fragmented. And f-x CEEMD has a 
good noise attenuation effect on most of seismic structures, but some 
effective signals of the in-phase axis with large tilt angle will be lost 
during attenuating random noise. The larger the tilt angle, the more 
serious the effective signal loss. In the denoising experiment, the seismic 
structure type, noise intensity and inclination of the tilt angle are taken as 
variables. And the multi-directional verification and comparison of the 
algorithm are carried out. The experimental result shows that the 
denoising effect of f-x CEEMD has nothing to do with the above 
variables, but only depends on the magnitude of the tilt angle. 

 
 Then, a feasible solution is proposed for the problems existing 

in f-x CEEMD. CEEMD and wavelet threshold method are combined 
in f-x domain to attenuate random noise. The denoising results, 
denoising residuals, F-K spectrum and amplitude spectrum of denoised 
data show that the proposed method can solve the problem of f-x 
CEEMD. The proposed method can also be used to attenuate random 
noise and protect effective signal well. The continuity and resolution of 
the in-phase axis in the denoised data are improved very well, and the 
SNR is also greatly improved. Finally, actual seismic data are used to 
further prove that the proposed method improves the quality of seismic 
data and provides high-quality seismic data for subsequent seismic data 
interpretation. It has very important practical significance. 

 
 

CONCLUSION 
 
 We proposed a method in f-x domain for attenuating random noise 

of seismic data. First, the original signal is divided into real part and 
imaginary part in the frequency domain, and each part is decomposed 
by CEEMD. Then, the noise-dominated IMF is denoised by wavelet 
threshold. Finally, the real part and imaginary part are merged, and the 
signal is transformed from the frequency domain back to the time 
domain. This method has a good denoising effect in both simulated data 
and field data. It not only improve the SNR, but also protect the effective 
signal and prevent the energy divergence. The proposed method has a 
better noise attenuation effect by comparing with the traditional 
methods. 
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