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ABSTRACT 
 
Li, Z.X., Xie, F., Ma, J.H., Qi, Z. and Wang, Y., 2023. CNN-based adaptive subtraction 
for the removal of seismic multiples. Journal of Seismic Exploration, 32: 169-184. 

 
 In seismic data processing primaries are usually distorted by multiples which need 
to be removed in advance before seismic imaging. After multiple modelling, adaptive 
subtraction is essential for removing multiples successfully and can be expressed as a 
problem of linear regression (LR) with L1 norm minimization constraint on primaries or 
support vector regression (SVR). Compared to the LR-based method, the SVR-based 
method achieves better separation of primaries and multiples since it transforms the 
modelled multiples nonlinearly for a better match with the true multiples in every 2D 
data window. However, the LR- or SVR-based method may harm primaries or cause 
residual multiples in complex subsurface media. In this paper a deep convolutional 
neural network (CNN) is constructed to better express the complicated mismatches 
between the modelled multiples (input data) and true multiples of the original data (label) 
than the LR or SVR model. To avoid overfitting to the original data and preserve 
primaries the L1 norm minimization constraint on primaries and L2 norm minimization 
constraint on CNN coefficients are used in the optimization problem. During CNN 
training multiple 2D data windows constructed with one or several gathers are used 
simultaneously to avoid overfitting. The trained CNN is used in the corresponding 
training data to remove multiples and then the same flowchart with CNN is used in other 
gathers. The proposed CNN-based method extracts high-level features of the modelled 
multiples to remove multiples. It is demonstrated in the synthetic and field data examples 
that the proposed CNN-based method can better remove multiples and preserve 
primaries than the LR- or SVR-based method. 
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INTRODUCTION 
 

 Seismic imaging with primaries is an effective tool for investigating the 
geological structures and the earth’s subsurface (Mousa, 2014). Generally, 
primaries are distorted by multiples, which need to be removed in advance. 
Adaptive subtraction is very important for the methods with the prediction 
and subtraction steps to remove multiples in seismic data processing 
(Berkhout and Verschuur, 1997; Verschuur and Berkhout, 1997; Abma et al., 
2005; Guitton, 2005). How to balance primary preservation and multiple 
removal is crucial for adaptive subtraction. 

  
 The commonly-used method removes the mismatches between the true 

and modelled multiples by using a matching filter (Guitton and Verschuur, 
2004). This method can be posed as a problem of linear regression (LR) 
with L1 norm minimization constraint on primaries (Guitton and Verschuur, 
2004; Verschuur, 2006). It can solve the LR problem in the time-space 
domain, Radon domain, curvelet domain and so on (Li and Li, 2017; 
Neelamani et al., 2010). Moreover, the method of support vector regression 
(SVR), which is a state-of-the-art tool of machine learning, has been 
introduced to express adaptive subtraction as a problem of SVR (Li, 2020). 
Compared to the LR-based method the SVR-based method can better 
separate primaries and multiples since it transforms the modelled multiples 
nonlinearly for a better match with the true multiples. Additionally, there are 
other adaptive subtraction methods, such as the pattern recognition method 
(Spitz, 1999; Guitton, 2005), blind source separation method (Kaplan and 
Innanen, 2008; Donno, 2011) and sparse coding method (Liu et al., 2017). 

  
 In this paper we treat the LR-based method with L1 norm minimization 

constraint on primaries and SVR-based method in the time-space domain as 
the benchmark for comparison. To deal with the non-stationary 
characteristics of the seismic data, we conduct the LR- or SVR-based 
method in overlapping 2D data windows. In every 2D data window an LR 
or SVR problem is solved, meaning that different LR or SVR problems are 
solved in different data windows. In this case we can not use the modelled 
multiples in multiple windows simultaneously for adaptive subtraction. 
Complicated discrepancies exist between the true and modelled multiples. 
The LR or SVR model has limited ability to express these discrepancies. We 
want to further improve the accuracy of adaptive subtraction, especially in 
complex subsurface media (Donno, 2011; Li, 2020). 

 
 The motivation of this paper is to introduce the convolutional neural 

network (CNN) into adaptive subtraction. As an advanced tool of deep 
learning (DL), CNN can extract high-level features in a nonlinear way from 
the training data and shows powerful ability in non-linear regression (LeCun 
et al., 2015). DL has been applied in many fields, such as the aerospace 
industry, biological medicine industry and remote sensing (Schmidhuber, 
2015; Cheng et al., 2016; Jin et al., 2017). We construct a deep CNN to 
express the complicated mismatches between the true and modelled 
multiples. In seismic exploration CNN has been introduced in many aspects, 
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such as seismic inversion, seismic interpretation, data denoising and data 
interpolation (Yuan et al., 2018; Yu et al., 2019; Gao et al., 2019; Kaur et al., 
2019; Geng et al., 2020; Liu et al., 2020). Additionally, CNN and another 
network U-net have been used in surface related multiple elimination 
(Siahkoohi et al., 2019; Jiao et al., 2021) with true primaries as labels for 
network training. Besides, U-net has been used in adaptive subtraction for 
multiple removal (Bugge et al., 2021; Zhang et al., 2021) and this method 
also needs true primaries as labels. The lack or imbalance of labels may 
reduce the accuracy of multiple removal, especially in field data processing. 
Our proposed CNN-based method does not need true primaries in training 
CNN. The convolutional autoencoder (CAE) and U-net (Kumar et al., 2021; 
Li et al., 2021) have been used in adaptive subtraction with the modelled 
multiples as the input data and the original data as the label and this method 
is demonstrated to achieve better results than the LR-based method. Our 
proposed CNN-based method uses different network architecture from CAE 
and U-net and uses both SVR- and LR-based methods for comparison. The 
adaptive subtraction method in Li and Gao (2020) uses CNN to extract the 
features of modelled multiple, which are then subtracted adaptively from the 
original data with the LR-based method. This method needs to solve 
different 3D matching filters in every 2D data window of the original data. 
Therefore, it can not use the original data in multiple 2D data windows 
simultaneously for adaptive subtraction. 

 
 In this paper adaptive subtraction is expressed as a non-linear 

regression problem with CNN. We treat the modelled multiples and original 
data as the input data and label, respectively. During the training procedure 
the original data and modelled multiples, in multiple 2D data windows, are 
fed into the CNN simultaneously. Different from the LR- or SVR-based 
method, the proposed CNN-based method estimates one deep CNN for all 
data windows. After training, we input the modelled multiples into the 
trained CNN to obtain estimated multiples, which are subtracted directly 
from the original data to estimate primaries. The deep CNN expresses the 
complicated mismatches between the true and modelled multiples in a non-
linear way. After the computation of convolution and non-linear activation 
function the deep CNN extracts high-level features of the modelled 
multiples, which are used to match with the original data. The proposed 
CNN-based method can better preserve primaries and remove multiples than 
the LR- or SVR-based method. 

 
 We give the following sections of the remainder of this paper. We 

illustrate the theory of the proposed CNN-based method, including the 
architecture of CNN and flowchart of the proposed CNN-based method. 
Then synthetic and field data examples are given to demonstrate the 
proposed CNN-based method. At last we give conclusions. 
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THEORY 
 

Architecture of CNN 
 
 For the proposed CNN-based method the following equation is used to 

express the relationship between the 2D data windows p , x  and y  (Yang 
and Ma, 2019; Li and Gao, 2020): 

 ( )= ;Net−p y x Θ     ,                                     (1) 
 
where Θ  represents the network coefficients and ( )Net •  represents CNN. 
p , x  and y  represent the estimated primaries, modelled multiples and 
original data, respectively.  
 

 We define the loss function ( )L Θ  to train the CNN as follows (LeCun 
et al., 2015; Yu et al., 2019): 

 

( ) ( ) 2
21

= ;L Net µ− +Θ y x Θ Θ      ,                                                  (2) 
 
where µ  is the regularization factor. To preserve primaries we use the L1 
norm to measure the super-Gaussian distribution of primaries (Guitton and 
Verschuur, 2004) in eq. (2). Generally, the regularization constraint of the 
CNN coefficients is used to avoid overfitting during training (Yu et al., 
2019; Jiao et al., 2021). L2 or L1 norm can be chosen in the regularization 
constraint and we choose L2 norm in eq. (2). In this paper the Adam 
algorithm (Kingma and Ba, 2015) is used to estimate the network 
coefficients Θ . And it chooses the batch size of S, which means that the 2D 
data windows with the number of S are fed into CNN simultaneously for 
training in every epoch. 

 
 Fig. 1 illustrates the architecture of CNN. Conv, ReLu and BN 

constitute the basic computation elements of CNN. They represent the 
convolution computation, Rectified Linear Units [ ( )max 0,⋅ ] and batch 
normalization, respectively. A number of filters are used in the convolution 
computation to generate multiple feature windows (Zhang et al., 2017). To 
ensure the size of the feature window and input window is the same, we pad 
zeros before convolution in each layer. The BN computation refers to the 
normalization, the scale and shift computation (He et al., 2016). Generally, 
we use BN before the ReLu computation. The advantages of using BN 
computation are low sensitivity to initialization, good training performance 
and fast training. The ReLu computation is used for nonlinearity to express 
the complex relationship between the input and output.  

 
 In Fig. 1 we use N  to denote the depth of CNN. The size of the 2D 

data window and feature window is chosen as n n× . The layers in CNN 
can be divided into three types. The input-output relation of the first layer is 
as follows: 

1 1 1( ), 1,2, ,k k kReLu k g∗ + = ⋅⋅⋅o = a f v      ,                                       (3) 
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where the input a  is a 2D data window, 1
kf  represents the k-th 2D filter with 

size, m m× . 1
kv  is the corresponding bias, g is the total number of 2D filters 

and 1
ko  is the k-th feature window. For the layers ( )2 ~ 1N −  the input-output 

relation is as follows: 
 

 ( )1( ) ,  1,2, , ,  2,3, , 1d d d d
k k k kReLu BN k g d N− ∗ + = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ −o = o f v    ,                        

(4) 
where d

kf  is the k-th 3D filter with size m m g× ×  in the d-th layer, d
kv  is the 

corresponding bias and d
ko  is the k-th feature window in the d-th layer. 

Therefore, in the layers ( )1~ 1N −  the output is g feature windows. For the 
last layer the input-output relation is as follows: 

 

1
1 1 1 1
N N N N− ∗ +o =o f v     ,                                                                 (5) 

 
where 1

No  is the output window with size n n× , 1
Nf  is the 3D filter with size 

m m g× ×  in the N-th layer and 1
Nv  is the corresponding bias. 

 

 
 
 
Fig. 1. Architecture of CNN. The input data, output data and label are multiple 2D data 
windows of the modelled multiples, estimated multiples and original data, respectively. 
The computation of the first layer is 2D convolution (Conv) followed by Rectified Linear 
Units (ReLu) to generate multiple feature windows. For layers ( )2 ~ 1N −  the 
computation is 3D convolution, batch normalization (BN) and Rectified Linear Units to 
generate multiple feature windows. The computation of the last layer is 3D convolution 
to give the output data. ( )L Θ  is the loss function minimized for CNN training. 
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Flowchart of the proposed CNN-based method 
 
 To deal with the non-stationary characteristics of the seismic data, we 

divide the modelled multiples and original data into 2D data windows with 
overlap in both temporal and spatial directions. For the SVR-based method 
an SVR problem is solved in every 2D data window with the feature vectors 
of the modelled multiples and the target values of the original data. 
Multiples are estimated by inputting the feature vectors of the modelled 
multiples into the SVR function. We estimate primaries by subtracting the 
estimated multiples directly from the original data. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Fig. 2. Flowchart of the proposed CNN-based method. 
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 For the proposed CNN-based method Fig. 2 shows its flowchart. 
Multiple 2D data windows of the original data and modelled multiples are 
fed into CNN for training. It is good to apply the CNN-based method on 
common shot gather, common offset gather or other data gathers. We 
complete the training by solving the optimization problem with the 
minimization of the loss function in eq. (2). After that, we input multiple 2D 
data windows of the modelled multiples into the trained CNN to estimate 
multiples. These modelled multiples are also used in the training stage. We 
obtain the estimated primaries by subtracting the estimated multiples 
directly from the original data. For the proposed CNN-based method we 
weight and blend the estimated primaries in all 2D data windows to obtain 
the seismic gathers as described in Li and Li (2018). 

 
 The difference between the proposed CNN-based method and the LR- 

or SVR-based method is summarized as follows: 
 
1) The Mathematical Model: The proposed CNN-based method uses a 

non-linear regression model defined by CNN and the LR- or SVR-based 
method uses a LR or SVR model.  

 
2) The Number of 2D Data Windows: The proposed CNN-based method 

uses multiple 2D data windows simultaneously for training CNN and the 
LR- or SVR-based method solves different LR or SVR problems in each 2D 
data window.  

 
3) The Matching Way: After the convolution, BN and ReLu computation, 

the proposed CNN-based method actually uses the high-level features of the 
modelled multiple extracted by CNN to match with the original data. The 
SVR-based method uses the modelled multiples, which are obtained by 
transforming the modelled multiples with a nonlinear kernel function, to 
match with the original data. The LR-based method uses the modelled 
multiples themselves to match with the original data and is apt to cause 
residual multiples or distorted primaries. The CNN-based method can better 
separate primaries and multiples than the SVR-based method, which can 
better separate primaries and multiples than the LR-based method. 
 
 
EXAMPLES 

 
 In this section the synthetic and field data are used. We compare the 

proposed CNN-based method with the SVR-based method (Li, 2020) and 
LR-based method (Guitton and Verschuur, 2004). 

  
 
The synthetic data example 

  
 We use the Sigsbee2B dataset (Bishop et al., 2001) in this example. The 

common offset gather with primaries and multiples from 5050 ms to 7800 
ms with 230 traces is shown in Fig. 3a. In this example we use the common 
offset gather since it can reflect the geologic structures clearly in the seismic 
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profile. This is beneficial to judge the effectiveness of multiple removal. 
True primaries and multiples are available in this dataset. The corresponding 
modelled multiples obtained by 2D SRME (Berkhout and Verschuur, 1997; 
Verschuur and Berkhout, 1997) and true primaries are shown in Figs. 3b 
and 3c, respectively. Compared with the true multiples, the modelled 
multiples have temporal, spatial and wavelet difference. In Fig. 3a the black 
arrow indicates the strong primaries, which are surrounded by weak 
multiples. 

 

 

 
 
Fig. 3. The synthetic data example: (a) The original data, (b) The modelled multiples, 
and (c) The true primaries. 

 

 

For the proposed CNN-based method we choose the CNN depth 8N = , 
the batch size 5S = , the epoch number 50, the 2D data window of size 50 50×  
and 64 filters of size 3 3×  in each layer by trial and error. The total number 
of 2D data windows for training CNN is 1131. The Adam algorithm uses 5 
data windows out of these 1131 data windows to estimate the CNN 
parameters at one time. In Fig. 4a and 4b we give five 2D data windows 
obtained from the original data and modelled multiples, respectively. The 
five 2D data windows in Fig. 4a correspond to the five white rectangles in 
Fig. 3a. The proposed CNN-based method can utilize the rich multiple 
information in five 2D data windows simultaneously to remove multiples. 
We choose the window sizes P = 52, Q = 52 and the local patch size 5K = , 

3R =  by trial and error for the SVR-based method. The filter length of the 
LR-based method has the same meaning as the local patch size of the SVR-
based method (Li, 2020). We choose the same window size and filter length 
of the LR-based method as the window size and local patch size of the 
SVR-based method to compare the performance of SVR and LR models. 
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Fig. 4. The synthetic data example: (a) Five 2D data windows of the original data, and (b)  Fig. 4. The synthetic data example: (a) Five 2D data windows of the original data, and (b) 
Five 2D data windows of the modelled multiples. 

 
 To give a quantitative evaluation on the performance of different 

methods, we define the signal-to-noise ratio as 

 ( )2 2
0 02 2

/ 10log10S N = −p p p       ,  
where p denotes the estimated primaries and 0p  denotes the true primaries. 
  

 For the proposed CNN-based method Figs. 5a and 5b shows its 
estimated primaries and removed multiples.  For the SVR-based method 
Figs. 6a and 6b show its estimated primaries and removed multiples. For the 
LR-based method Figs. 7a and 7b show its estimated primaries and removed 
multiples. For the estimated primaries in Figs. 5a, 6a and 7a the S/Ns are 
17.0, 13.5 and 12.7, respectively. The proposed CNN-based method obtains 
higher S/N than the SVR-based method, which obtains higher S/N than the 
LR-based method. 

 

 
Fig. 5. The synthetic data example: (a) The estimated primaries of the proposed CNN-
based method.  (b)  The removed multiples of the proposed CNN-based method,  and    
(c) The difference gather by subtracting Fig. 3c from Fig. 5. 
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Fig. 6. The synthetic data example: (a) The estimated primaries of the SVR-based 
method, (b) The removed multiples of the SVR-based method, and (c) The difference 
gather by subtracting Fig. 3c from Fig. 6a. 

 
 
 By comparing the areas indicated by the white arrows in Figs. 5a, 6a 

and 7a we can see that the LR- or SVR-based method causes obvious 
residual multiples. Moreover, the LR- or SVR-based method causes some 
overfitting to primaries. The black arrows in Fig. 6b and 7b indicate the 
distorted primaries. In addition, the black arrow in Fig. 7a indicates that the 
LR-based method generates the false events around the strong events of 
primaries. Fig. 5c shows the difference gather of the proposed CNN-based 
method by subtracting Fig. 3c from Fig. 5a. Fig. 6c shows the difference 
gather of the SVR-based method by subtracting Fig. 3c from Fig. 6a. Fig. 7c 
shows the difference gather of the LR-based method by subtracting Fig. 3c 
from Fig. 7a. The difference gather, which equals to the primary error, can 
measure whether the multiples are effectively removed or the primaries are 
well preserved. It can be observed that the primary error energy of the LR-
based method is larger than that of the SVR-based method, which is larger 
than that of the proposed CNN-based method.  

 
The example demonstrates that using the deep CNN to express the 

complicated discrepancies between the true and modelled multiples with 
plenty of training data, the proposed CNN-based method can extract the 
high-level features of the modelled multiples to remove the residual 
multiples effectively. We use the L1 norm minimization constraint on 
primaries and the regularization constraint of the network coefficients in 
eq.(2). Therefore, the proposed CNN-based method can avoid overfitting to 
primaries. The strong primaries indicated by the black arrow in Fig. 5a are 
preserved effectively by the proposed CNN-based method. For the data 
window on the far left of Fig. 4, Fig. 8 shows 16 feature windows (out of 64) 
after the ReLu computation in the 2nd, 5th and 8th layer, respectively. The 
proposed CNN-based method uses these high-level features of the modelled 
multiples rather than the modelled multiples themselves to match with the 
original data. Compared to the LR- or SVR-based method, the proposed 
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CNN-based method preserves primaries effectively while removing 
multiples. 

 

Fig. 7. The synthetic data example: (a) The estimated primaries of the LR-based method. 
(b) The removed multiples of the LR-based method, and (c) The difference gather by 
subtracting Fig. 3c from Fig. 7a. 
 
 

 

 
Fig. 8. The synthetic data example: (a) 16 feature windows (out of 64) after the ReLu 
computation in the 2nd layer, (b) 16 feature windows (out of 64) after the ReLu 
computation in the 5th layer, and (c) 16 feature windows (out of 64) after the ReLu 
computation in the 8th layer. 
 
 
The field data example 

 
 In this field data example we use a common-offset gather from 3200 ms 

to 7998 ms with 500 traces for adaptive subtraction. The time interval is 
2ms. Fig. 9a and 9b shows the original data and modelled multiples, 
respectively. In Fig. 9a there are weak primaries, which are covered by 
strong multiples. 

 
 For the proposed CNN-based method we choose the CNN depth 16N = , 

the batch size 16S = , the epoch number 50, the 2D data window of size 
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50 50×  and 64 filters of size 3 3×  in each layer by trial and error. The total 
number of 2D data windows for training CNN is 966. Fig. 10a and 10b 
shows the estimated primaries and removed multiples by the proposed 
CNN-based method. We choose the window size P = 30,  Q = 30 and the 
local patch size K = 5, R = 5 by trial and error for the SVR-based method. 
Figs. 10c and 10d show the estimated primaries and removed multiples of 
the SVR-based method. For the LR-based method we choose the same 
window size and filter length as the window size and local patch size of the 
SVR-based method. Fig. 10e and 10f show the estimated primaries and 
removed multiples of the LR-based method. 

 

 

Fig. 9. The field data example: (a) The original data, (b) The modelled multiples. 

 
 In Figs. 10a, 10c and 10e the white arrows indicate that the CNN-based 

method removes more residual multiples than the SVR- or LR-based 
method. Fig. 11a shows the magnified result corresponding to the black 
rectangle in Fig. 9a. Fig. 11b, 11c, 11d, 11e, 11f, 11g and 11h show the 
magnified results corresponding to Fig. 9b, 10a, 10b, 10c, 10d, 10e and 10f, 
respectively. By comparing the areas indicated by the black arrows in Figs. 
11c, 11e and 11g we can see that the LR- or SVR-based method removes 
weak primaries mistakenly. The white ellipses in Fig. 11h indicate that the 
LR-based method causes more distorted primaries than the SVR- or CNN-
based method. In areas where strong multiples exist, the proposed CNN-
based method preserves weak primaries effectively. Therefore, the proposed 
CNN-based method can better balance primary preservation and multiple 
removal than the LR- or SVR-based method. 
 

 
CONCLUSION 
 
 In this paper we introduce a CNN into adaptive multiple subtraction. 
We construct a deep CNN to express the complicated mismatches between 
the true and modelled multiples. The original data and modelled multiples in 
multiple 2D data windows are fed into a CNN simultaneously for training. 
The proposed CNN-based method makes the high-level features of the 
modelled multiples match with the original data. In this way it expresses 
adaptive multiple subtraction as a problem of non-linear regression and can 
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better balance primary preservation and multiple removal than the LR- or 
SVR-based method. Synthetic and field data examples are used to test the 
proposed CNN-based method and demonstrate its effectiveness. 

  

 

 
 

Fig. 10. The field data example: (a) The estimated primaries of the proposed CNN-based 
method, (b) The removed multiples of the proposed CNN-based method, (c) The 
estimated primaries of the SVR-based method, (d) The removed multiples of the SVR-
based method, (e) The estimated primaries of the LR-based method, and (f) The removed 
multiples of the LR-based method. 
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Fig. 11. The field data example: (a) The magnified result of the original data 
corresponding to the black rectangle in Fig. 9(a). (b) The magnified result of the 
modelled multiples, (c) The magnified result of the estimated primaries of the proposed 
CNN-based method, (d) The magnified result of the removed multiples of the proposed 
CNN-based method, (e) The magnified result of the estimated primaries of the SVR-
based method, (f) The magnified result of the removed multiples of the SVR-based 
method, (g) The magnified result of the estimated primaries of the LR-based method, and 
(h) The magnified result of the removed multiples of the LR-based method. 
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