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ABSTRACT 
 
Zarei, M., Hashemi, H. and Bagheri, M., 2023. Fuzzy inference system design for 
multiple attenuation with quantitative validation criteria using Auto Correlation Energy 
Ratio (ACER). Journal of Seismic Exploration, 32: 205-227. 

 
Many methods for multiple attenuation are based on numerous signal properties 

for years. Each multiple attenuation technique has advantages and disadvantages and is 
effective for a particular type of multiples. Recently, fuzzy logic has shown wide 
application in seismic processing and interpretation. A method for multiple attenuation 
using Radon transform by fuzzy inference system is introduced to run the multiple 
attenuations step adaptively and automatically. We applied an intelligent adaptive 
approach based on fuzzy logic to attenuate multiples in each super common midpoint 
gather automatically and find good results compared to the manual defined mute function 
in the radon domain. Applying the new method to synthetic and real data has shown the 
power of the proposed method for multiple attenuations in the area with substantial two-
way travel time differences that occurred due to the different water depths. A quantitative 
validation criterion named Auto Correlation Energy Ratio (ACER) is presented to 
guarantee that the final result in multiple attenuations using the new proposed approach is 
correct. 

 
KEY WORDS: multiple attenuation, fuzzy logic, Radon transform, marine data,  
    water depth. 
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INTRODUCTION 
 

Multiple attenuation is a critical step in marine seismic data 
processing. Many methods introduced for this aim are based on either the 
properties of multiples or the physics of its propagation: periodicity 
(Peacock et al., 1969), velocity discrimination (Schneider et al., 1965) 
coherency (Kneib and Bardan, 1994), wavefield extrapolation (Verschuur et 
al., 1992), move out and dip discrimination (Mayne, 1962; Hampson, 1986). 
The Radon transform, a powerful tool, has a long history in signal 
processing. It is an essential tool in seismic data processing with variant 
modes (Linear, Parabolic, and Hyperbolic). 

  
The seismic processor's role significantly impacts the result of 

multiple attenuations, especially when a velocity discrimination tool like 
radon transform is used. Selecting the numerous space in the radon domain 
is not a deterministic and trivial procedure. The multiple attenuations yield 
different results when another processor finalizes the task. The neural 
network (NN), fuzzy classification, and mixed-use (ANFIS) are appropriate 
tools for removing human uncertainty from seismic data processing and 
interpretation. These tools help us implement verbal roles in processing and 
interpretation flows. Using this application decreases the human fault and as 
a result, the processing and interpretation flow can be automated 
accordingly. 

  
Many authors introduced the different applications of the NN and 

fuzzy systems in seismic processing and interpretation flow. Fuzzy logic and 
the fuzzy variable was primarily raised by Zadeh (1965). Aminzadeh (1991) 
discussed the expert system in seismic exploration, which uses fuzzy 
clustering. Finally, Aminzadeh and Wilkinson (2004) reviewed the 
application of neural networks and fuzzy logic in seismic object detection. 
They focused on a rule-based neural network to combine seismic attributes 
and effectively bring data with the interpreter's knowledge to reduce 
exploration risk. 

 
 Coppens (1991) used the rule-based system to determine seismic 

velocity. He developed the SHIVAAS expert system that aids in interpreting 
seismic velocity analysis computed as velocity spectra. Finol and D.Jing 
(2002) used a fuzzy inference system to predict permeability on sedimentary 
rock using the well log data. Janakiraman and Konno (2002) introduced the 
method of calculating subsurface geological feathers in the area between 
boreholes using a fuzzy neural network (FNN), inverted geophysical data 
(Geo-tomogram), and fuzzy geological knowledge. 

 
Hashemi et al. (2008) presented a new technique based on 

unsupervised clustering with a fuzzy GK clustering algorithm to detect 
random seismic noise in pre and post-stack data. They used an adaptive 
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distance norm to discover centers of ellipsoidal clusters and create a partition 
matrix that defines the soft decision boundaries between seismic events and 
random noise. Crucelis and Milagrosa (2009) developed an algorithm based 
on Fuzzy Inference Systems, using fuzzy rules in the form of If ‐ Then to 
implement first break picking in VSP data automatically. Based on this 
approach, the error of first break picking has been reduced to 2 (ms) in the 
presence of noise (e.g., in a low S/N ratio scenario). 

 
Li and Sun (2016) and Sun and Li (2015) used a fuzzy C-means 

clustering procedure to improve the result of 3D inversion of magnetic data 
in remnant magnetization and a multi-domain clustering algorithm. They 
show it can effectively combine statistical petrophysical information into a 
deterministic inversion. Singh et al. (2018) used FCM clustering to create 
fuzzy constrained inversion to improve the result of inversion of the 
resistivity data. He used two fuzzy variables to identify geological units, the 
mean of resistivity, and L1 and L2 norms to minimize the new fuzzy 
objective function. Finally, Hadiloo et al. (2018) compare the unsupervised 
and supervised fuzzy clustering in seismic facies classification in the 
channel system, extract the seismic facies pattern, and introduce a new GUI 
software (SeisArt) for this purpose. 

 
Chongjin et al. (2020) used the guided FCM clustering method for 

joint inversion of the subsurface model's three different physical properties 
of rocks (gravity, magnetic, and seismic). In this approach, he received 
steady clustering results with geophysical properties and achieved more 
reliable results after interpretation. 

  
This paper presents the new fuzzy inference system (FIS) based on 

the knowledge of seismic processors, attributes in the radon domain, and 
theoretical approaches to create a fuzzy system to attenuate the multiples 
automatically. First, some note about the fuzzy system and fuzzy logic is 
introduced, then a fuzzy jointing system and multiple attenuation methods is 
targeted. Finally, a simple fuzzy system for multiple attenuations is 
constructed, and discussion and conclusions are made. The main goal is the 
automation of Radon transform with a quantitative measure in an adaptive 
CDP per CDP (Super CDP per Super CDP) manner. 

 
 

FUZZY LOGIC AND FUZZY INFERENCE SYSTEM 
 
The concept of fuzzy variables against crisp variables is the most 

critical achievement (Zadeh, 1965). Fuzzy logic is a platform to use 
linguistic variable and knowledge-based information as mathematical 
operations. Fuzzy logic developed in a wide range of science for control and 
operating systems. The application of fuzzy logic and the fuzzy system has 
significant advantages and added value, especially in the interpretation of 
data. For example, there are many variables in seismic specialists dependent 
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on the point of view of the processor/interpreter, and manual parameter 
change by the user is needed. Also, fuzzy logic is used as a tool in 
processing sequences in seismic data processing, like first break picking by 
Gao (2019), automation of seismic processing (Hashemi, 2018), and random 
and coherent noise attenuation (Hajian, 2016). Here, it is intended to use 
fuzzy logic to automate multiple attenuation by radon transform approach, 
which is one of the key steps in marine seismic processing. 

 
  

 
MULTIPLE ATTENUATION IN FUZZY LOGIC TERMINOLOGY 

 
 
FIS Generation Approach 
 

The task in this section is to link fuzzy and multiple attenuation 
methods. There are some suggested approaches to connect fuzzy methods to 
multiple attenuation methods: 

 
1. Choosing the best method for multiple attenuation in the area with 
different types of multiple and diverse geology by fuzzy inference system 
(FIS). Multiple attenuation methods usually use their properties for the 
suppression step. Different multiples types are created in the area with 
diverse geology along a 2D seismic line or in 3D seismic data. So applying 
only one method for multiple attenuation while other sources are possible is 
inefficient. For this reason, it is necessary to use more than one method to 
suppress numerous energy of a seismic CDP gather. To accomplish this job, 
we cannot check all the CDP gathers. It is also impossible to get through 
different types of multiple attenuation techniques and select the best method 
(and best parametrization) to lose primary energy. So, a tool with an 
adaptive intelligent approach is needed to automatically do this task and 
suggest the best multiple attenuation method CDP per CDP. Fuzzy logic and 
fuzzy system are the proper applications due to their definitions in 
incorporating membership functions, verbal rules, and/or/not rule changes 
possibility and knowledge combination of input attributes. It is necessary to 
list the limitation of different types of multiple attenuation methods to have a 
guideline for choosing the proper way depending on the multiple types and 
geology structures. These limitations and extra information, such as 
variations of water depth and autocorrelation for all traces in each shot 
gather or CDP gather can be initial information to build FIS to choose 
multiple attenuation methods for each shot or CDP gather.  
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Table 1. Limitation of different multiple attenuation methods. 
	

	
 

 
2.  Some methods of multiple attenuation need a set of initial parameters 
or choosing a mute area by a processor like demultiple using Radon 
transform and F-K transform. The initial parameter setting and muting are 
significant challenges in these methods. These will be more severe when 
variable water depth and complex geology are subjected to creating different 
multiples. The presenceof multiple types in the complex area initiates the 
idea of using different muting in the Radon and F-K domain. In the 
conventional method, some information comes from the nature of multiple 
and primary events in the transform domain, t-x domain (CDP gather or shot 
gather), and their physical property. This information can be used in FIS as a 
knowledge-based FIS to increase the targeted method's efficiency. Based on 
the advantage and disadvantages of multiple attenuation methods, the 
seismic processor transforms it into the fuzzy if-then rules. 

 
In addition to processor knowledge and experience-based 

information, some additional rules in an attribute can be extracted from 
seismic data or attributes in transform domain like frequency attributes, 
texture attributes, geometry attributes, statistical attributes, and so on that 
help generate better FIS. 

 
 
 
 
 
 

N
o. 

Method Limitations 

  
1 Radon Transform Depending on Multiple-Primary Mute Function Selection by 

Processor 
2 SRME Limitation of Variable Water Depth 
3 Predictive 
deconvolution, 
Radon Transform 

Limitation in Area with Complex Geological Structures 
(Sheng et al., 2014) 

4 Radon Transform Limitation on Extending the  Muting Function for All Data in 
Area With Complex Geology and Variable Water Depth 

5 Transform, Radon 
Transform F-K 

Limitation in Near Offset (Yuza et al., 2020; Yilmaz, 1989) 

6 SRME Requires Dense Data and Regular Survey Geometry 
7 Predictive 
Deconvolution 

Limitation in Far Offset (deep water) (Xiao et al.. 2003) 
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Table 2. Fuzzy if-then rules from the seismic processor's knowledge and experience.  
	

Then If 

The event probably is multiple Increases in water depth (the    
curvature of the event increases) 

The multiple is not water bottom multiple The intercept time of an event is 
lower than two times of the seafloor 

Probably the events with the  higher 
intercept times are multiple of the primary 

events 

The events with different intercept 
times have the same curvature 

The events map to a point in the 
corresponding radon transform 

The input events in the radon 
transform are hyperbolic, parabolic, 

or linear 
The accuracy of the method in 

attenuation of the bottom water multiples 
is reduced 

In the SRME method, if the 
water is shallow 

The best method for multiple attenuation is 
predictive deconvolution 

If the type of multiples are 
short period 

predictive deconvolution is not 
successful 

If the data contains far offset 
values 

F-K and Radon methods are 
problematic 

In the absence of variable 
speed in input data 

 
 

Clustering Approach 
 
Commonly, there are two types of FIS generation methods 

(Guillaume, 2001). In the first method, theoretical information separates the 
target domain into a model-based FIS generation class. These FIS include 
fuzzy rules made from expert knowledge, and they are called fuzzy expert 
systems or fuzzy controllers, depending on their ultimate use. It also facts 
out the limitations of human information, particularly the difficulties in 
formalizing relations in composite processes. Moreover, this type of FIS 
suggests a high semantic level and a good generalization capability. Another 
class of FIS generation is based on automatic learning from data, generally 
indicated as data-based FIS generation, to automatically separate the target 
domain to an unknown cluster and create an intelligent FIS for a specified 
aim. 

 
In this study, both steps for rule generation are used in the final fuzzy 

system. In the first step, using model-based FIS and a theoretical approach, 
the radon domain can be separated into different classes containing multiple 
areas, primary area, and noises in the radon domain. We used class multiple 
as an output of this approach. Secondly, we used the output of the model-
based fuzzy system as output for fuzzy data-based system. Rule generation 
in this type of FIS will be done using automatic learning, depending on the 
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input property. In this way, fuzzy clustering using FCM (Bezdek et al. 2003) 
is used to cluster input and output data to different classes. 

  
The critical point in this procedure is the number of clusters in input 

and output data directly affecting the final result and class separation. 
Commonly, the number of classes must be more than those represented on 
data in the fuzzy system and can be separated into different categories. There 
are three main classes in our problem: multiple, primary, and noise. So, we 
need to select a number of clusters (classes) in input data more than 3.  
 
 Now, some essential questions are coming next below.  
 
1) How to choose the number of classes? And what are the reasons?  
2) What is the correct or best membership function for input and output? 
3) Are there redundant rules (clusters) in the initial clustering?  
4) Can the final FIS extracted from one or more CDPs be extended to other 

CDPs or seismic lines? 
 
 The answers lead us to this final clustering system identification: 
 
1. The number of classes in initial clustering depends on the number of 

classes in the data. It must be selected more than it all of the properties in 
data extracted in different classes to optimize the final FIS using its rules and 
link these rules with those extracted using expert knowledge. 
 
2. The type of membership function areas varied from one CDP to the 

next. This affects the selection of membership functions. Therefore, its 
property must be extracted and optimized for each CDP and is varied to the 
nearby CDP. This procedure uses energy distribution in the radon domain 
and extra information about the target CDP like water depth. As a result, we 
propose using a Gaussian or П-shaped membership function for all axes in 
input and output variables. 
 
3. The redundant rule in initial clustering is trivial. The number of rules 

is much more than the number of clusters in the data, but the main question 
is how to find the best number for the clusters for initial clustering? 
Presenting a general method for accomplishing this action is not feasible, but 
we can include the sense of seismic processor and type of energy 
distribution in the radon domain. These can help the seismic processor select 
the best number for initial clustering. The process of the initial clustering 
may be made two or three times to find the best number of clusters. By the 
way, after selecting the number of clusters, it is necessary to check different 
rules and solve the problem of the redundant rule. So, the selection of the 
cluster numbers is highly affected by the rule optimization procedure done 
after initial clustering. Removing the redundant rules can be influenced to 
obtain a better FIS with the best performance in multiple attenuations. 
 



	 212 

4. The generalization of the extracted FIS on the part of the data shall be 
used for all of the data along with of seismic line or seismic area. In 
addition, some extra and detailed information about the study area shall be 
accessed, and the geological structure of the near-surface will be targeted. 
Finally, a deep system to prepare the out  FIS is found, and the processor can 
import information in the middle of processing if needed. 

 
 

Implementation of multiple Attenuation using FIS 
 
For implementing multiple attenuations in the radon domain using 

fuzzy in practice, the real data from the Gulf of Mexico is used as a sample 
to achieve the best and most efficient way to execute fuzzy tools on real 
data. In the first step, the parabolic Radon transform perform on NMO 
corrected gather, and the input data for fuzzy clustering is ready. The input 
data in this approach for multiple attenuation is the Radon transform of 
NMO corrected gather. We need to add some extra information to input data 
for clustering with enough accuracy. This additional information can be 
some attributes in the Radon domain, such as geometry attribute, texture 
attribute, frequency attribute, statistical attribute, etc. Each attribute category 
is sensitive to one feature type (orientation, frequency behavior, statistical 
behavior of target data) in the target domain. Due to the inherent difference 
between original data in the offset domain and transform data in the radon 
domain, many attributes mentioned above are not helpful for the specified 
purpose. So, a wide range of characteristics in the radon domain is checked 
to find the efficient attribute class number for clustering the radon domain to 
perform the task correctly. The texture and edge attributes (Zarei and 
Hashemi, 2019) are good candidates for involvement in fuzzy clustering. 
Also, we used water depth as a tool to define a label in Radon transform and 
apply this labeling to input data for fuzzy clustering. 

 
Some arbitrary values are primarily tested to find the optimum 

number of clusters in the radon domain. Depending on the class separation 
for each, the number of classes as ten yields the best results for the final 
clustering procedure. Since the 3 class of data is initially assumed in the 
radon domain (primary area, multiple area, and random noise), logically, the 
optimum number of clusters for fuzzy clustering is targeted as three, but this 
is not the best choice in every situation. This is because the separation of 
these three classes is not feasible due to the high values of the class overlap. 

 
Figs. 1 and 2 show the extracted rules from data using FCM 

clustering with 5 and 10 clusters. As shown in these figures, the class 
separation shows a reasonable rising rate with increasing the cluster number, 
although the redundant rules are growing. The problem of redundant rules 
can be handled by merging or removing these rules. The direct result of this 
discussion is "with an increasing number of clusters to 20 or more, better 
discrimination of classes is reached.". This statement shall be considered 
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"true" or "false." This is "true" because with an increase of cluster numbers, 
class discrimination increases, and it is false because instantaneously, the 
redundant rules and runtime of multiple and primary separations are 
increased. It is necessary to care for the optimum number of clusters because 
the multiple in each data varies depending on the property of multiple 
created on the surveying area. 

 

 
Fig. 1. The generated rules with five clusters using FCM clustering. 

 
Fig. 2. The generated rules with ten clusters using FCM clustering. 
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As the output of this step, we achieved the appropriate FIS for 
multiple attenuation. The next step is the automation of multiple attenuation, 
which is done using the Adaptive Neuro/Network-based Fuzzy Inference 
System (ANFIS). The multiple attenuation is automatically done using this 
tool, and the mute function is adaptively identified in each CDP. The output 
of ANFIS is a radon panel in which the multiple area is in the region with 
the sharpest energy of the radon domain. So, with the amplitude 
thresholding, the multiple area and mute function are created, and this mute 
function is applied to the original radon panel. 

  
Fig. 3 shows the flowchart of adaptive multiple attenuation using 

parabolic Radon transform with variable mute function. 
 

 

 
Fig. 3. Flowchart of Multiple Attenuation using ANFIS. 
	

 
Application to Synthetic Data 

 
A synthetic CMP gather is generated containing five primary and two 

multiple events. The model features are identified in Table 1. The sample 
rate is 2 (ms), and the offset variety is 12.5 (m) to 3025 (m) with an interval 
of 12.5 (m). A zero-phased Ricker wavelet with a central frequency 20 (Hz) 
is used to generate a seismogram. The S/N ratio for generating synthetic data 
set is level five because it can be tested methodology in the presence of 
noise. The data, its corresponding NMO corrected gather (of input CMP 
gathers), and its parabolic radon transform is shown in Fig. 4. 

Input	NMO-
Corrected	Gather 

Forward	Radon	
Transform 

Calculation	of	
Attributes 

Manage	Rule	
(Redundant	Rule	

Reduction) 

Initial	Clustering	
Using	FCM	 

Create	Initial	ANFIS	
Structure	Using	Sugeno	

FIS 

Train	ANFIS 

Test	ANFIS 

Generate	Mute	
Function 

Remove	Multiple	in	
Radon	Domain 

Inverse	Radon	
Transform 

Generation	of	
Sugeno	FIS 
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Table	3.	The	properties	of	the	synthetic	model	(Zarei	and	Hashemi,	2021). 
	

Event No. TWT (ms) 
Velocity 

(m/s) 
1 500 1500 
2 800 1800 
3 1300 2200 
4 1800 2500 
5 2200 2800 

 
 
 
The result of applying multiple attenuation by the fuzzy system is 

shown in Fig. 5. The input parameter for this synthetic data is prepared and 
imported into the ANFIS structure. As shown in Fig. 5(b), multiple areas are 
highlighted as the radon domain's highest energy part, so the mute function 
is extracted using amplitude thresholding [Fig. 5 (c)]. Finally, the multiple 
events reconstructions perform using the mute function [Fig. 5(d)] and then 
subtracted from NMO gather [Fig. 5(e)]. 

 
 
 

 
 

 
Fig. 4. Synthetic data (a), NMO Gather (b) and Radon Transform of NMO gather (c). 
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Fig. 5. (a) NMO Gather. (b) ANFIS output (a). (c) Mute function created by ANFIS.  
(d) Reconstruction of multiple from panel (c). (e) Primary event [panel (a)-panel (d)]. 
 
 
 
Application to Real Data 

 
To confirm the ability of the presented method in the different areas 

with different types of multiple, we used two data sets from the Gulf of 
Mexico and the Oman Sea. Fig. 6 shows the results of multiple attenuation 
for the data set from the Gulf of Mexico. Multiple areas are definitely 
modeled using the mute function created by ANFIS tools. The mute function 
completely covers the considerable area without any deviation and 
distortion. Also, some places in the radon panel included multiple locations 
(shallow time, high moveout) that may contain some signal energy in this 
method removed from the mute function. 
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Fig. 6. (a) NMO Gather (Gulf of Mexico). (b) ANFIS output (a). (c) Mute function 
created by ANFIS. (d) Reconstruction of multiple from panel (c). (e) Primary event 
[panel (a)-panel (d)]. 

 
 
 
Another data set is used to show the application of the method on a 

marine data set from the Oman Sea. This data set is a 2D line that was 
recorded in 2000. The geology of this zone near the shore is similar to a 
typical vertical transverse isotropic (VTI) media in a shallow depth, and the 
section also encloses deep water effects far from the seashore, bottom 
simulating reflector (BSR), and other events are visible as well. The sea 
depth differs from zero to more than 600 meters beside a seismic line 
perpendicular to the shore, generating different multiples in seismic data 
(ranging from a short period to a long period). So, multiple removals of 
seismic data in this area are one major step in the processing sequence, and 
the big challenges are a change of multiple types and the existence of 
anisotropy, especially in the lower depths. BSR follows the seafloor 
topography, and it is highly possible to remove data as multiple. Because the 
different types of multiple exist in data, the energy distribution in the radon 
domain is varied in the seismic line according to the seafloor depth, so other 
mute functions must be applied for efficient multiple attenuation. Fig. 7 
shows the stack section that we used to test the new method. As seen in this 
figure, different multiples exist in this dataset, and water levels extremely 
change in the seismic line. 
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Fig. 7. A Stack Section of the marine seismic data from the Oman Sea. 
 

 
In the conventional method for multiple attenuation, one mute 

function eliminates multiple in all CDP vintages. However, this may affect 
signal energy because it is hard to define one mute function to eliminate all 
multiples in the whole seismic line. 

 

 
 

Fig. 8.  (a) NMO Gather (Oman Sea, CDP=1000).  (b)  Parabolic Radon of panel  (a).  
(c) Output of FIS.  (d) Mute function created by ANFIS. (e) Reconstruction of multiple 
from panel (d). (f) Primary event [panel (a) - panel (e)]. 
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Fig. 9. (a) NMO Gather (Oman Sea, CDP=2000).  (b) Parabolic Radon of panel  (a). 
(c) Output of FIS.  (d) Mute function created by ANFIS. (e) Reconstruction of multiple 
from panel (d). (f) Primary event [panel (a)-panel (e)]. 
	
	

 

  
Fig. 10.  (a) NMO Gather (Oman Sea, CDP = 3000).  (b) Parabolic Radon of panel (a).  
(c) Output of FIS.  (d) Mute function created by ANFIS. (e) Reconstruction of multiple 
from panel (d). (f ) Primary event [panel (a)-panel (e)]. 
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Figs. 8 to 10 show that multiple elimination is done for different CDP 
locations with changing seafloor depths. As seen in these figures, by 
decreasing water level, energy distribution then area of multiple in radon 
domain changes. Therefore, removing multiple energy from the radon 
domain with the one mute function is impossible. Thus, in the new method 
using FIS and with the adoption of FIS by a neural network (ANFIS) mute 
function is individually defined in each CDP against the conventional 
method that used one mute function. 

 
 

 
 

Fig. 11. Multiple attenuation using parabolic Radon with a single mute. 
	
	
	

 
 

Fig. 12. Multiple attenuation using ANFIS (variable mute). 
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Figs. 11 and 12 show the result of multiple attenuation using the 
conventional mute function definition, and the presented method defines the 
mute function automatically and adaptively. In these figures, some part of 
multiple energy remains in the stack section with a single mute function, 
while there is no multiple energy in the stack section with a variable mute 
function. 

 

To show the final result of multiple attenuation and compare between 
constant mute and variable mute function in Radon demultiplex, we 
magnified a small portion of the stack section in  

Fig. 13. , as seen in this figure,  the continental dip, constant mute is 
failed, and variable mute removed almost all parts of the multiple signals. 

 
 

 
 
Fig. 13. a) Stack section before multiple attenuation, b) stack section after multiple 
attenuation using constant mute, c) stack section after multiple attenuation using variable 
mute. 
 
 
 
Quantitative Validation using AutoCorrelation Energy Ratio (ACER) 

 
The new method for multiple attenuation needs a tool to compare its 

result with different methods used for multiple attenuation. Typically, the 
qualitative comparison is made using autocorrelation of the stacked section 
before and after multiple attenuation. We present a quantitative tool based 
on autocorrelation energy ratio (ACER) as a powerful tool to certify the 
introduced method can handle multiple attenuation in the presence of 
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complex structures and variable water depth. The autocorrelation section for 
real data from Oman Sea before and after multiple attenuation using 
conventional parabolic Radon transform with single mute function and new 
method that used variable mute function in the whole line shown in Figs. 14 
to 16. 

 

 
 
Fig. 14. Autocorrelation section before multiple attenuation, the red arrow shows multiple 
locations in the autocorrelation section. 

 
 
Multiple events were highlighted using the red arrow (Fig. 14) and 

green arrow (Fig. 15). Comparing the time of arrow in the autocorrelation 
section (Figs. 14 and 15),  a partial energy reduction appears in the pick 
associated with the green arrow because of multiple attenuation using 
conventional Radon transform with a single mute function almost in the left 
panel of autocorrelation section. This autocorrelation energy pick, 
highlighted with the green arrow, shows that the single mute function can't 
handle multiple attenuation in areas with complex structures and 
considerable differences in water depth. 
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Fig. 15. The green arrow shows multiple locations in the autocorrelation section after 
multiple attenuation using conventional parabolic Radon transform. 
	
	

As seen in Figs. 14 and 16, multiples are clearly present in the 
autocorrelation section. Still, after the used variable mute function that was 
created using the fuzzy system, almost all of the multiples disappear from 
the autocorrelation section except a small part of the line in the CDP number 
500-950. This is because this portion of the stack section has low fold 
coverage. 
 

 
Fig. 16. Autocorrelation section after multiple attenuation new method with variable 
mute function. 
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We used the energy ratio as a quantitative measure to show the new 
method's performance in multiple decreases. Initially, the auto-energy 
energy was calculated for autocorrelation between 0 and 100 milliseconds 
for the three parts of the autoimmune (Figs. 14-16). The autocorrelation 
energy was estimated between 100 and 500 milliseconds in the second stage 
(Fig. 17). 

 
 

Fig. 17. Autocorrelation energy between 0-100 & 100-500 ms for three autocorrelation 
section Figs. 14-16. 

 
 
As we expect, this energy ratio directly depends on the success of 

multiple attenuation methods. If multiples are removed using the current 
techniques, this is high, and if multiples are present in the autocorrelation 
section, this ratio is low. 

 

 
 

Fig. 18. ACER calculation for Fig.17. 
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Figs. 17-a, 17-b, and 17-c show the energy between 0-100 ms of the 

autocorrelation section and Figs. 17-d, 17-e and 17-f, show the energy 
between 100-500 ms of the autocorrelation section of Figs. 14-16. The result 
of ACER calculation for three autocorrelation is shown in Fig. 18. ACER 
ratio for multiple attenuation with the variable mute compared to 
conventional parabolic Radon transform with single mute function and 
autocorrelation section before multiple attenuation is considerable. This 
shows the acceptable performance of the presented method in multiple 
attenuation in the presence of complex structures and variable water depth. 

 
 

CONCLUSION 
 
In this paper, the benefits of fuzzy logic and FIS are reviewed, and it 

has been shown how to use this powerful tool to attenuate multiples from 2D 
seismic data without the handy piking of the mute function. Also, we created 
a FIS to automate the multiple attenuation in the radon domain using the 
original Radon and some attributes in the radon domain. All of the 
parameters for performing multiple attenuation are adaptively discussed, and 
how to set the optimum parameters for FIS is explained. The limitation of 
the conventional multiple attenuation method is listed, and it is used to 
create fuzzy if-then roles for FIS generation. Applying the introduced 
process to synthetic and real data shows the advantage of fuzzy radon 
transform. 

 
The new method results show that the classical radon demultiple in 

the area with variable water depth (subduction zone and continental dip) is 
failed, and multiple energy will not be attenuated by variable mute. The 
flexibility of the mute function can easily remove most part (near to all) of 
multiple signals. Also, the ACER ratio as a quantitative criterion showed the 
good performance of the new method. 

 
 A significant added value of the introduced method is that the 

attenuation of multiples is done entirely automatically without manual 
intervention, and hence it is independent of the user. Another advantage is 
hidden in the result of multiple attenuation, it still remains constant by 
changing the user. The progress of multiple attenuation can be made 
adaptively and CDP per CDP. Moreover, in future studies, it is feasible to 
distribute FIS application to decide to discover which method yields the best 
result for applying to each data set using preliminary knowledge and 
database information. 

  
The idea of separating primaries and multiples in case of overlap is 

achieved by the variable adaptive mute function introduced in this paper. 
Generating a radon transform with a variable and adaptive mute function 
working CDP by CDP can significantly enhance the effectiveness of seismic 



	 226 

multiple attenuation, allowing for more accurate and reliable imaging of 
subsurface structures and features. This approach is particularly valuable for 
complex geological settings and scenarios where overlap energy is a 
significant source of interference. 
 
 
REFERENCES 
 
Aminzadeh, F., 1991. Expert Systems in Exploration. SEG, Tulsa, OK. 
Aminzadeh, F. and Wilkinson, D., 2004. Soft computing for qualitative and quantitative 

seismic object and reservoir property prediction Part 2: Fuzzy logic 
applications. First Break, 22: 69-78. 

Bezdek, J.C., Ehrlich, R. and Full, W., 1984. FCM - The fuzzy C-means clustering-
algorithm. Comput. Geosci., 10: 191-203. 

Chongjin, Z., Peng, Y. and Jun. G., 2020. Integrated interpretation of multi-geophysical 
inversion results using guided fuzzy C-means clustering. Internat. J. Earth Sci. 
Geophys., 6: 035. 

Coppens, F., 1991. A rule-based system for the determination of seismic velocities,. 
Expert Syst. Explor.: 33-58.  

Crucelis, L. and Milagrosa, A., 2009. Automatic first break picking in VSP data using 
fuzzy logic systems. 11th Internat. Congr. Brazil. Geophys. Soc., Salvador, 
Bahia, Brazil, 24-28 August.  

Finol, J.D. and Jing. X., 2002. Permeability prediction in shaly formations: The fuzzy 
modeling approach. Geophysics, 67: 817-829. 

Gao, L., Jiang, Z.Y. and Min, F., 2019. First-arrival travel times picking through sliding 
windows and fuzzy C-means. Mathematics, 7: 221. 

Guillaume, S., 2001. Designing fuzzy inference systems from data: an interpretability-
oriented review. IEEE Transact. Fuzzy Syst., 9: 426-443. 

Hadiloo, S., Hashemi, H. and Beiranvand, B., 2018. Comparison between unsupervised 
and supervised fuzzy clustering method in interactive mode to obtain the best 
result for extract subtle patterns from seismic facies maps. Geopersia, 8: 27-
34. 

Hajian, A., Kimiaeefar, R. and Siahkoohi, H., 2016. Random noise attenuation in 
reflection seismic data using Adaptive Neuro-fuzzy Interference System 
(ANFIS). Extended Abstr., 78th EAGE Conf., Vienna. 

Hampson, D., 1986. Inverse velocity stacking for multiple elimination. Canad. J. Explor. 
Geophys., 22: 44-55. 

Hashemi, H., 2018. Seismic pattern recognition: automation of processing and 
interpretation. Proc. 18th Iran. Geophys. Conf., Tehran: 1226-1228. 

Hashemi, H., Javaherian, A. and Babuska, R, 2008. A semi-supervised method to detect 
seismic random noise with fuzzy GK clustering. J. Geophys. Engineer., 5: 
457. 

Janakiraman, K.K. and Konno, M., 2002. Cross‐borehole geological interpretation model 
based on a fuzzy neural network and geotomography. Geophysics, 67: 1177-
1183. 

Kneib, G. and Bardan, V., 1994. Targeted multiple attenuation. Extended Abstr., 56th 
EAGE Conf.,  Vienna: H034. 



	 227 

Li, T., Du, Y. and Yuan, Y., 2019. Use of variable fuzzy clustering to quantify the 
vulnerability of a power grid to earthquake damage. Sustainability, 11: 5633. 

Li, Y. and Sun, J., 2016. 3D magnetization inversion using fuzzy C-means clustering 
with application to geology differentiation. Geophysics, 81(5): J61-J78. 

Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques. 
Geophysics, 17: 927-938. 

Peacock, K. and Treitel, S., 1969. Predictive deconvolution - Theory and practice. 
Geophysics, 34: 155-169. 

Schneider, W., Prince, E. and Giles, B., 1965. A new data processing technique for 
multiple attenuation exploiting differential moveout. Geophysics, 30: 348-
362. 

Sheng, C., Zhen, Z. and Jun, G., 2014. A marine case analysis of multiple suppression. 
Internat. Geophys. Conf., Beijing, April: 261-264. 

Singh, A., Sharma, S.P., Akca, I. and Baranwal, V.C., 2018. Fuzzy constrained Lp-norm 
inversion of direct current resistivity data. Geophysics, 83(1): E11-E24. 

Sun, J. and Li, Y., 2015. Multi-domain petrophysically constrained inversion and geology 
differentiation using guided fuzzy C-means clustering. Geophysics, 80(1): 
ID1-ID18. 

Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A., 1992. Adaptive surface-related 
multiple elimination. Geophysics, 57: 1166-1177. 

Xiao, C., Bancroft, J., Brown, R.J. and Cao, Z., 2003. Multiple Suppression: a literature 
review, CREWES Research Rep., 15. 

Yilmaz, Ö.,  1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382. 
Yuza, N.H., Nainggolan, T.B. and Manik, H., 2020. Multiple attenuation methods in 

short-offset 2D marine seismic data: a case study in Cendrawasih Bay. IOP 
Conf. Series Earth Environment. Sci.: 429. 

Zadeh, L., 1965. Fuzzy sets. Informat. Control, 8: 338-353. 
Zarei, M. and Hashemi, H., 2019. Edge detector Radon transform for seismic multiple 

attenuation - 2nd Conf. Arab. J. Geosci., Tunisia, November. 
Zarei, M. and Hashemi, H., 2021. Primary-multiple separation technique based on image 

Radon transform. Arab. J. Geosci., 14: 462. 
 
 
 
 
-  


