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ABSTRACT 
 
Zhou, J., Li, L.J., He, Q.G., Liu, W. and Ma, H.Z., 2023. Demodulated synchrosqueezing 
S-transform and its application and economic value in seismic data analysis. Journal of 
Seismic Exploration, 32: 229-242. 
 

 The synchrosqueezing transforms based on short-time Fourier transform (FSST) and 
wavelet transform (SSWT) have been widely used in the analysis of non-stationary 
signals. In the light of the superiority of S-transform (ST) over short-time Fourier 
transform (STFT) and wavelet transform (WT) in time-frequency representation (TFR), 
we propose a novel time-frequency analysis method, termed as demodulate 
synchrosqueezing S-transform (DSSST), which achieves a highly energy-concentrated 
TFR by making full use of two operations including demodulation technique and 
ST-based synchrosqueezing transform (SSST). The formulas for the DSSST and its 
inverse transform are derived. Synthetic example shows that the DSSST has higher 
time-frequency resolution compared with the standard ST and SSST. Then we apply the 
DSSST to perform the spectral decomposition on a real field data including gas-filled 
sand. The results demonstrate that the DSSST can be utilized to well characterize the 
spectral anomalies related to hydrocarbon reservoir, which renders that this new 
approach is promising for seismic data analysis. 

 
KEY WORDS: time-frequency representation. S-transform, synchrosqueezing transform, 
      demodulate synchrosqueezing S-transform, hydrocarbon detection. 
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INTRODUCTION 
 

 Time-frequency analysis (TFA) has been successfully applied in seismic 
data analysis over the past few decades, which decomposes 1D seismic 
signal into 2D time-frequency map in order to characterize the time-varying 
frequency response of seismic signal that reflects the subsurface reservoir 
(Castagna et al., 2003; Liu and Fomel, 2013; Chen et al., 2014). The 
common TFA techniques include the short-time Fourier transform (STFT) 
(Allen, 1977), wavelet transform (WT) (Sinh et al., 2005) and the 
S-transform (ST) (Stockwell et al., 1996). However, the time-frequency 
energy based on such transforms always spreads over a ribbon in the 
time-frequency spectrogram due to the Heisenberg uncertainty principle or 
the selection of window. Consequently, the inappropriate spectral anomalies 
often appear on the time-frequency map, which may lead to some mistakes 
on seismic interpretation based on spectral decomposition results. One of 
the solutions to this problem is to improve the time-frequency resolution of 
spectral decomposition. 

 
 Auger and Flandrin (1995) developed the reassignment method (RM) to 

enhance the resolution of a TFR by the aid of transferring the 
time-frequency coefficients from the original position to the center of 
gravity of signal’s energy distribution along the time and frequency axes. 
Unfortunately, the RM does not allow for signal reconstruction. 
Synchrosqueezing transform (SST) that was first introduced by Daubechies 
et al. (2011) based on WT serves as an alternative to the empirical mode 
decomposition (EMD), which has greatly improved the readability of a TFR 
by means of reassigning the time-frequency coefficients in the frequency 
direction (Herrera et al., 2014). In addition, the SST not only has a rigorous 
theoretical foundation, but also has the inverse transform. Meanwhile, 
Thakur and Wu (2011) further extended the idea of synchrosqueezing to the 
STFT, and put forward the STFT-based SST (FSST) to retrieve the ideal 
TFR. Inspired by the SST and FSST, many new ‘synchrosqueezing’ 
transforms are emerging. For instance, Yang (2015) developed the 
synchrosqueezing wave packet transforms (SSWPT) for 1D general mode 
decomposition. Huang et al. (2016) proposed a synchrosqueezing 
S-transform (SSST) that is achieved with the help of synchrosqueezing the 
spectrum of the ST to detect frequency spectral anomalies correlated with 
the gas hydrate and free-gas accumulations. Wang et al. (2018) replaced the 
frequency-dependent Gaussian window in the standard S-transform by a 
parameterized function that is composed of three parameters, and put 
forward the synchrosqueezing generalized S-transform (SSGST) for seismic 
time-frequency analysis. Liu et al. (2019) proposed the self-adaptive 
generalized S-transform (SAGST) to extract information from seismic data 
by setting the parameter of the generalized S-transform (GST) adaptively 
using the instantaneous frequency of seismic traces. However, it is 
noteworthy that a weak frequency modulation hypothesis is made on the 
modes constituting the signal for the above methods. In other words, such 
approaches are unable to handle the signals with strongly varying 
instantaneous frequency well. 
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 Compared with the STFT and WT, the ST has the obvious advantages in 
time-frequency characterization and phase retaining of signals. In this paper, 
we present a novel TFA method that we refer to as the demodulate 
synchrosqueezing S-transform (DSSST), in which the demodulation and 
synchrosqueezing techniques are utilized to estimate the instantaneous 
frequency. Then the DSSST is employed to enhance the time-frequency 
resolution of spectral decomposition of seismic signals. The structure of this 
paper is as follows. We first describe the basic principles of the ST and 
SSST, and then derive formulas for the DSSST and the signal reconstruction 
by its inverse transform. Next, a synthetic example illustrates the superior 
energy-concentration of DSSST in the time frequency map by comparing 
with the standard ST and SSST. Finally, we apply the DSSST to real field 
data in order to further demonstrate the potential of DSSST in 
hydrocarbon-saturated reservoir identification with high precision. 

 
 

PRINCIPLES 
 
S-transform 
 

A signal s  is defined as follows: 
 

    ( ) ( ) ( )2i ts t A t e πϕ=    ,                         (1) 
 
where ( )A t  and ( )tϕ  denote the instantaneous amplitude and phase, 
respectively. 
 

The S-transform of signal s is represented as: 
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where 0f  is the central frequency, and T  is the window duration 
parameter. It is worth noting that the ST is equivalent to STFT when 0f f= . 
 
 
Synchrosqueezing S-transform 

 
 The aim of SSST is to retrieve the ideal time-frequency representation 

by the instantaneous frequency estimation. 
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where [ ]t∂ •  and [ ]R •  represent the partial derivative and real part of a 

complex number, respectively. 
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 The core idea of SSST is to rearrange the coefficients from ( ),t f  to 

( ), ,st t fω
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⎜ ⎟
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where γ  denotes the threshold, and δ  is the Dirac function. 

Finally, the mode can be reconstructed by summing the coefficients 

( ),sST t f  in the vicinity of ( )' tϕ .    
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where d is the interval parameter, and Fg is the Fourier transform of 

Gaussian window function g. 

Demodulated synchrosqueezing S-transform 

The demodulated technique mainly depends on two demodulation 

operators, shift demodulation operator ( ) ( )2i t dt
sd t e

π ϕ− ∫=  and translation 

demodulation operator ( ) ( )2, i u t
td t u e πϕ−= . So, the total demodulation 

operator is expressed as: 

    ( ) ( ) ( ) ( ) ( )( )2
, ,

i t dt u t

s td t u d t d t u e
π ϕ ϕ− −∫= • =                    (6) 

where ( )tϕ  is the instantaneous frequency ridge, u  denotes the 

time-domain coordinate. 

The product of signal ( )s t  and ( ),d t u  is described as: 
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The ST based on demodulated signal can be defined as: 
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 Similarly, SSST is expressed as: 
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where the new instantaneous frequency is represented as:  
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Finally, the mode can be approximately reconstructed by: 
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 In addition, for a multicomponent signal, we assume that the 

instantaneous frequencies of the modes of the multicomponent signal are 
separated at each time point. Thus we can assign the respective 
demodulation operators to the different modes. Then, a fine TFR is achieved 
by combining the time-frequency distribution of each sub-domain, in which 
the boundary is calculated by means of average of adjacent ridges using the 
ridge estimation algorithm. 
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where ( )0 0B t = , and ( )NB t  is the half of sampling frequency. The adjacent 

( )nB t  makes up a sub-domain for each mode to demodulate separately. 
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SYNTHETIC EXAMPLE 
 
 In this section, the numerical investigation is presented to demonstrate 

the improvements brought by the proposed DSSST in comparison with the 
ST and SSST on synthetic example. We apply the ST, SSST, and DSSST, 
respectively, on a synthetic signal that consists of three components, shown 
in Fig. 1, which was previously used for evaluation by Thakur et al. (2013) 
and Huang et al. (2015). 
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where ( )n t  is the Gaussian noise, the sampling frequency and 
signal-to-noise (SNR) are 1000 Hz and 8 dB, respectively. 
 

 Figs. 2(a)-(c) show the TFR results of the synthetic signal using the ST, 
SSST, and DSSST. It can be seen that the ST suffers from a poor 
time-frequency resolution [See Fig. 2(a)]. The time-frequency energy is 
blurred, and it spreads out in the vicinity of the instantaneous frequencies of 
the signal. The operation of ‘squeezing’ makes the energy more 
concentrated on the spectrum of the SSST, which effectively improves the 
readability of a TFR [See Fig. 2(b)] compared with the standard ST method. 
However, the time-frequency curves still show the energy divergence to a 
certain extent, which is not conducive to instantaneous frequency estimation. 
By comparison, the DSSST provides a nice TFR result [See Fig. 2(c)], and 
the energy is perfectly concentrated than the other two methods. In order to 
clearly observe the performance of the above approaches, we enlarge some 
areas marked by the yellow and red rectangular boxes in Fig. 2, which are 
displayed in Figs. 3 and 4, respectively. We can clearly find the advantage 
of the DSSST in characterizing the non-stationary signals, which makes the 
time-frequency information more easily interpretable [See Figs. 3(c) and 
4(c)]. For a better understanding of the improvements brought by the 
DSSST over other studied methods, we utilize a quantitative comparison of 
all these techniques in terms of energy concentration of the TFR results by 
employing a measure named Renyi entropy, and a lower Renyi entroy value 
indicates a more energy-concentrated TFR result. The Renyi entropies from 
the ST, SSST and DSSST methods are listed in Table 1. As can be clearly 
seen, the proposed DSSST has the lowest value, in other words, it achieves 
the optimal energy-concentrated result on the time frequency map. The 
Renyi entropy is defined as follows: 
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where ( ),TFR t f  is the TFR result. 
 

 
Fig. 1. A synthetic signal. 
 

  
                 (a)                                       (b) 
 

 

(c)   
 
Fig. 2. Time-frequency maps obtained by ST (a), SSST (a) and DSSST (c), respectively. 
DSSST achieves a highly energy-concentrated TFR. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 3. Enlarged time-frequency maps from a yellow rectangular box in Fig. 2. The 
DSSST (c) provides a more energy-concentrated TFR result than the ST (a) and SSST (b) 
methods. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 4. Enlarged time-frequency maps from a red rectangular box in Fig. 2. The DSSST 
(c) has the higher time-frequency resolution compared with the ST (a) and SSST (b) 
methods. 
 
 
Table 1. Renyi entropies of the ST, SSST and DSSST methods. 

 
TFA ST SSST DSSST 

Renyi 
entropy 

17.4192 15.5576 12.3804 
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FIELD EXAMPLE 

 
 We now illustrate the applicability of the proposed DSSST method in 

detection of hydrocarbon by using a real field data including gas-filled sand, 
which is composed of 60 traces, the time duration is 1s, and time sampling 
rate is 2 ms. The gas-filled reservoir that has been confirmed by the drilling 
is marked by a black arrow (Fig. 5), in which the seismic trace 20 passes 
through the hydrate accumulation reservoir. As shown in Fig. 6(a), the 
time-domain waveform of the 20th trace displays the strong amplitude 
around 4s. The trace 20 is processed respectively using the ST-based, 
SSST-based, and the DSSST-based spectral decomposition. The resulting 
TFR results are plotted in Figs. 6(b), 6(c) and 6(d), respectively. We can 
clearly see that these TFRs have the similar characteristics, for example, the 
strong spectral energy exists about 4s. Frequency squeezing enables better 
time-frequency resolution for SSST method compared with the standard ST 
method. In contrast with the ST and SSST results, the proposed DSSST 
performs obviously better, with the more interpretable instantaneous 
frequency due to its high resolutions both in time and frequency. 

 
 
 

 
 

 
 
Fig. 5. The real field data. 

Reservoir 
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(a) 

 

(b) 

 

(c) 

 

(c) 
Fig. 6. Trace 20 (a) from real data in Fig. 5, and the resulting TFRs using by ST (b), 
SSST (c) and DSSST (d). 
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 Figs. 7(a), 7(c) and 7(e) are respectively the 20 Hz constant-frequency 
slices of ST-based, SSST-based and DSSST-based spectral decomposition. 
Figs. 7(b), 7(d) and 7(f) are the 40 Hz constant-frequency slices of the 
aforementioned methods. Comparing Fig. 7(a) and 7(b), it can be found that 
the time-frequency energy at the location of hydrocarbon reservoir varies 
slightly between the 20 Hz and 40 Hz slices of ST, which makes it difficult 
to confirm the existence of potential hydrate accumulation. In contrast, such 
differences can be easily identified on the slices of SSST and DSSST. 
Moreover, due to the advantages of DSSST in high time-frequency 
resolution, the difference in energy between the two constant-frequency 
slices is even more prominent, which is helpful to detect the hydrate 
accumulation. 
 

  
                    (a)                                     (b) 

  
                    (c)                                      (d) 

  
                     (e)                                      (f) 
 
Fig. 7.  Frequency slices of spectral  decomposition  results.  (a) 20 Hz slice of ST,  
(b) 40 Hz slice of ST, (c) 20 Hz slice of SSST, (d) 40 Hz slice of SSST, (e) 20 Hz slice 
of DSSST, and (f) 40 Hz slice of DSSST. The DSSST with high time-frequency 
resolution is more conducive to hydrocarbon identification. 
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CONCLUSIONS 
 

 We propose a new technique, called DSSST, for time-frequency 
representation of non-stationary signals, and derive the formulas for the 
DSSST and its inverse transform for signal reconstruction. The DSSST 
introduces the demodulation technique into the SSST for more accurate 
instantaneous frequency estimation, thus, it effectively enhances the 
resolution of the time-frequency representation of signals. The result of 
synthetic example shows that the DSSST can accurately characterize 
instantaneous frequency information of seismic signal. Field data further 
indicates the potential of the DSSST method in detection of spectral 
anomalies associated with hydrocarbon reservoir, which renders this 
technique promising for seismic data processing and imaging. Further work 
should be devoted to a deeper analysis of the influence of noise on the 
demodulation operators. 
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