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ABSTRACT 
 
Dong, X.T., Lin, J., Lu, S.P., Cheng, M. and Wang, H.Z., 2023. Self-guided attention 
denoising network for pre-stack seismic data: from coarse to fine. Journal of Seismic 
Exploration, 32: 271-300. 

 
 Background noise attenuation is one of the most essential steps in seismic data 

processing. Residual background noise is likely to cause some artifacts in the following 
seismic imaging, thus bringing huge difficulties to the final interpretation. In recent years, 
deep-learning (DL) methods based on data driven strategy, especially the convolutional 
neural network (CNN), work well in seismic noise attenuation. In addition, it is applied 
automatically without parameter fine-tuning after training. To further improve their 
performance, we propose a novel architecture: self-guided attention network (SGA-Net) 
by combining self-guided strategy and spatial attention mechanism. Different from most 
of the conventional CNNs, this proposed SGA-Net can capture multi-scale features by 
performing the convolution operation on seismic data with different resolutions. In this 
network, the self-guided strategy is adopted to take full advantage of the multi-scale 
features; specifically, we utilize the global coarse features extracted at low resolution to 
guide the extraction process of local finer features at higher resolution. Furthermore, we 
design a spatial attention module with two inputs to fuse the global coarse and local fine 
features. We set up four competitive methods for SGA-Net including two traditional 
seismic denoising methods and two existing DL denoising methods in both synthetic and 
real experiments and experimental results demonstrate the advantage of SGA-Net both in 
noise attenuation and signal preservation. 

 
KEY WORDS: deep-learning, seismic noise attenuation, convolutional neural network, 
      signal recovery. 
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INTRODUCTION 
 

 Exploring high-performance attenuation methods for background noise 
is always a challenging and widely-concerned topic in seismic exploration 
(Elboth et al., 2010; Oropeza and Sacchi, 2011; Beckouche and Ma, 2014). 
In the past, the common-middle-point (CMP) stacking was one of the most 
commonly-used attenuation methods for surface waves and random noise, 
which can satisfy the major application of seismic exploration at that time: 
simple subsurface structural imaging (Schneider, 1984; Krohn et al., 2008). 
In recent years, some of the more demanding seismic applications including 
reservoir inversion, full waveform inversion (FWI), and multi-wave and 
multi-component acquisition technology requires the seismic data with 
higher quality (Krohn et al., 2008), increasing the need for more powerful 
denoising methods for seismic data. 

 
 Existing seismic denoising methods generally fall into five categories: 

predictive filtering, decomposition methods, low-rank methods, sparse 
transform methods, and dictionary learning. The basis of predictive filtering 
methods is that seismic data is predictable, so they can separate signals from 
noise by using differences between the two in time or frequency domain. 
The most well-known predictive filtering is f-x deconvolution; t-x predictive 
filtering, non-stationary predictive filtering, and median filtering also belong 
to this kind of method (Gulunay, 1986; Chen and Ma, 2014; Chen and 
Sacchi, 2017). Although predictive filtering methods show good efficiency 
and stability in industry, filter length is likely to affect their performance 
and how to select an optimal one is always a nasty problem. Empirical mode 
decomposition (EMD; Huang et al., 1998), variational mode decomposition 
(VMD; Liu et al., 2022) and singular value decomposition (SVD; Bekara 
and van der Baan, 2007) are three relatively representative 
decomposition-based methods. They accomplish the denoising task by 
retaining the intrinsic modes associated with signals and discard other 
modes. However, the phenomenon of mode aliasing often disturbs these 
decomposition-based methods, especially when signals and noise co-exist in 
the same frequency band. Noise-free seismic data is assumed to be a 
low-rank structure when using the low-rank denoising method and noise 
contamination will increase its rank, so noise attenuation can be achieved by 
reducing the rank of noisy seismic data. Low-rank methods including 
Cadzow filtering (Cadzow, 1988), principal component analysis (PCA; 
Chen and Sacchi, 2015), and singular spectrum analysis (SSA; Oropeza and 
Sacchi, 2015) gradually receive lots of attention due to their good 
performance in denoising the seismic data with high complexity (Trickett, 
2008; Cheng et al., 2015; Chen and Sacchi, 2015), but huge computational 
cost caused by numerous SVD operations limits their further applications 
(Wang et al., 2021). The sparsity of seismic data is closely related to the 
amplitude or position differences between signals and noise in the transform 
domain. Therefore, researchers try to seek the sparest transform for seismic 
data, such as wavelet, curvelet, seislet, dreamlet, contourlet, and shearlet 
(Herrmann and Hennenfent, 2006; Shan et al., 2009; Mousavi and Langston, 
2016; Naghizadeh and Sacchi, 2018; Dong et al., 2019a). However, the 
performance of sparse transform method depends on the threshold function, 
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and an inappropriate one will result in the amplitude decay of recovered 
signals and incomplete noise attenuation. To sparsely represent the seismic 
data better, some dictionary-learning-based methods are proposed to 
adaptively learn the basis instead of the fixed basis often employed in the 
sparse transform methods described above (Beckouche and Ma, 2014). 
Unfortunately, a large amount of computational cost required by dictionary 
update seriously hinders the practical application of dictionary learning 
denoising methods (Chen, 2022). 

 
 These abovementioned traditional methods for seismic denoising have 

solved a large number of practical geophysical problems, but most of them 
rely on some strict assumptions and are disturbed by some limitations. 
Typically, the events are assumed to be linear of locally linear when using 
f-x deconvolution; the application of sparse transform and dictionary 
learning presupposes the sparsity of seismic data; the non-local median 
filtering assumes the noise is uncorrelated and thus it has little suppression 
effect on the coherent noise. Moreover, the time-consuming artificial 
parameter fine-tuning is the basis of obtaining the best possible performance 
by using these conventional methods; in other words, they are not intelligent 
(Yu et al., 2019). However, with the rapid development of 
multi-dimensional seismic (3D, 4D, even 5D), the volume of seismic data 
increases exponentially, bringing challenges to the intelligence of seismic 
denoising methods. Moreover, more harsh and complex exploration areas 
(desert, loess tableland, and ocean) result in the low SNR of seismic data 
(i.e., weak signals and strong noise); noise often exhibits more complex 
characteristics including surface scatting, low frequency, and co-existence 
of the same frequency band with signals. Hence, exploring more powerful 
and more intelligent denoising methods is a pressing issue that need to be 
addressed in the community of seismic exploration. 

 
 Deep-learning (DL) first proposed by Hinton and Salakhutdinov (2006) 

can implicitly express a non-linear and complex mapping relationship that 
we need by using the data-driven strategy (Lecun et al., 2015). 
Convolutional neural network (CNN) is one of the most representative DL 
methods . Due to its advantages of weight sharing and local perception 
(Dong et al., 2019b), CNN has attracted lots of attention from numerous 
fields of data processing. A number of classical CNN frameworks, such as 
VGG-Net (Simonyan and Zisserman, 2015), residual neural network 
(Res-Net; He et al., 2016), dense-connection CNN, and feed-forward 
denoising CNN (DnCNN; Zhang et al., 2017), have shown excellent 
performance in natural image denoising, super resolution, image recognition, 
edge detection, semantic segmentation (He et al., 2016; Zhang et al., 2017). 

  
Inspired by these successful applications of CNN-based methods in 

natural image processing, a number of experts have gradually applied them 
to some fields of seismic data processing including noise suppression, 
first-arrival-time picking, FWI, interpolation, velocity analysis, and fault 
detection (Wu et al., 2019; Zhu et al., 2019; Zhu and Beroza, 2019; Zhang 
and Alkhalifah, 2019; Dong and Li, 2021; Yu and Ma, 2021). In 
CNN-based denoising methods for seismic data, we often utilize supervised 
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(Dong et al., 2019b), unsupervised (Saad and Chen, 2021), or 
self-supervised (Birnie et al., 2021) methods to obtain the optimal trainable 
parameters and thus the trained model can effectively express the useful 
mapping relationship between noisy data and signals or noise. Yu et al. 
(2019) utilize a uniform CNN framework to attenuate some common 
seismic background noise including random noise, ground-roll, and 
multiples. This CNN-based method shows better performance in both 
denoising quality and degree of intelligence compared with some traditional 
methods, but the obvious difference between training and testing data and 
inappropriate hyper-parameters will significantly degrade its performance. 
Dong et al. (2019a) propose an adaptive DnCNN for low-frequency noise in 
desert area. This DL method utilizes the determination of high-order statistic 
to construct an adaptive dataset for CNN and the trained model shows good 
performance in attenuating random noise and surface waves simultaneously. 
However, the performance of adaptive DnCNN may degrade when 
sufficient noise training data is not available. Kaur et al. (2020) adopt the 
basic framework of generative adversarial network (GAN) and then use 
local time-frequency transform and regularized non-stationary regression to 
create a large amount of label data for GAN. The trained model exhibits 
similar suppression effect on ground-roll as the two conventional methods 
used for creating label data, but it automates the suppression process and 
does not rely on human experience to fine-tune parameters. Paired 
clean-noisy training data is one of the major limitations disturbing existing 
DL-based seismic denoising methods. To mitigate this limitation, Birnie et 
al. (2021) refine the processing of seismic noise attenuation as a 
self-supervised fashion based on the blind spot network. Synthetic and real 
experimental results suggest the feasibility of self-supervised strategy in 
seismic data denoising. 

 
 Generally, features extracted by convolution operations are closely 

related to the accuracy of mapping relationships used to implement the 
denoising task. In other words, more effective features will strengthen the 
denoising performance of trained models derived from CNN. However, 
most of existing CNN-based methods only extract features from seismic 
data with one resolution (or called one scale). In other words, they just focus 
on single-scale features, but ignore multi-scale features which can be used 
to further enhance their denoising performance. The abovementioned 
multi-scale features can be explained as: when conducting convolution 
operations on seismic data with high and low resolutions, CNN can extract 
global coarse and local fine features simultaneously. In this work, we use 
‘multi-scale features’ to specifically refer to these local fine and global 
coarse features extracted at different resolutions. To take full advantage of 
these informative multi-scale features of seismic data and then enhance the 
denoising performance of CNN, we adopt the self-guided strategy (Liu et al., 
2020) and spatial attention mechanism (Cui et al., 2022) to design a novel 
CNN architecture for seismic data denoising, called self-guided attention 
network (SGA-Net). Specifically, this proposed SGA-Net contains multiple 
top-down sub-networks which can extract multi-scale features at different 
resolutions. The down sub-network conducts convolution operations on the 
seismic data with low resolution to extract global coarse features, so as to 
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have an overview of the whole data beforehand. Then, these global coarse 
features are propagated into upper sub-network to guide the extraction 
process of local finer features at higher resolution. In one word, we utilize 
the self-guided strategy to achieve the guidance from coarse features to fine 
features. In addition, we design a double spatial attention (DSA) module 
with two inputs to merge the multi-scale features extracted at different 
resolutions and then strengthen the features that are conductive to seismic 
data denoising. In experimental section, multiple synthetic and real 
examples indicate the superior denoising effect of SGA-Net to four 
comparative methods and the positive influence of self-guided strategy on 
weak signal recovery. 

 
 

NETWORK 
 
Network structure 

 
 Fig. 1 displays the architecture of SGA-Net, which contains three 

sub-networks: high-resolution, middle-resolution, and low-resolution 
sub-networks from top to bottom. These three sub-networks extract 
multi-scale features from seismic data with different resolutions. We apply 
two downsampling operations to the high-resolution seismic data input 𝐲𝟏 
with dimension of 64×64×1 to generate the middle-resolution seismic data 
input 𝐲𝟐 with dimension of 32×32×128 and the low resolution seismic data 
input 𝐲𝟑	 with dimension of 16×16×256. The increase in the number of 
channels for middle- and low-resolution inputs is to avoid the possible 
information loss after applying the two consecutive downsampling 
operations. Having the three multi-resolution inputs 𝐲𝟏, 𝐲𝟐,𝐲𝟑 , the 
low-resolution sub-network firstly processes the low-resolution input 𝐲𝟑. 
Performing convolutions on such a low-resolution enables SGA-Net to 
enlarge its size of receptive field rapidly, which is essential for the feature 
extraction ability of CNN (Yu and Koltun, 2016; Zhao et al., 2017). 
Therefore, with three Conv+ReLU layers and three Deconv+ReLU layers, 
the bottom low-resolution sub-network will first have a coarse overview of 
the whole input. Then, the global coarse features extracted by the down 
low-resolution sub-network are propagated into the middle-resolution 
sub-network to guide the extraction process of features in middle resolution. 
Concretely, the output of low-resolution sub-network 𝐱𝟑 and the output of 
middle resolution input   𝐲𝟐	 after being processed by four Conv+ReLU 
layers, i.e., 𝐱𝟐 , are used as inputs to the DSA module of middle-resolution 
sub-network. Similarly, the features extracted at middle-resolution are 
propagated into the top high-resolution sub-network to guide the extraction 
process of local fine features. Concretely, the output of middle-resolution 
sub-network 𝐱𝟐 and the output of high-resolution input 𝐲𝟏 after applying 
four Conv+ReLU layers, i.e., 𝐱𝟏 , become two outputs to the DSA module 
in high-resolution sub-network. In general, this proposed SGA-Net transfers 
the contextual information extracted at low-resolution to higher resolution, 
i.e., from bottom low-resolution to middle resolution and final to top 
high-resolution, thus achieving the guidance from global coarse features to 
local fine features.  
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Fig. 1. Network architecture of the proposed SGA-Net. 
 

  
 SGA-Net contains multiple Conv+ReLU layers, Deconv+ReLU layers, 

two downsampling operations, two upsampling operations, and two DSA 
modules. These Conv+ReLU and Deconv+ReLU layers are used for 
multi-scale feature extraction; the former focus on noise suppression, while 
the latter is biased for signal recovery. The downsampling operation can 
generate multi-resolution seismic data inputs. The upsampling operation 
ensures the consistency of dimensions when propagating the contextual 
information to higher resolution. The structure and basic function of DSA 
module will be described in the section named ‘DSA module’. Moreover, 
we add some residual and skip connections into the top high-resolution 
sub-network and bottom low-resolution sub-network, which can improve 
the training accuracy and avoid the performance degradation caused by 
stacking numerous layers (Yang et al., 2021). 

 
 

The workflow of self-guided strategy 
  

The core of SGA-Net is the self-guided strategy that uses the global 
coarse contextual information to guide the feature extraction process at finer 
scale (i.e., higher resolution). The strategy of using guidance information to 
enhance performance comes from the field of natural image processing. 
Many tasks, such as depth upsampling, super-resolution, and image 
restoration, have validated the effectiveness of this strategy (Hui et al., 
2016). Therefore, we design our network based on the self-guided strategy 
from coarse to fine. 

  
In this section, we present the workflow of self-guided strategy. Given a 

high-resolution seismic data input 𝐲𝟏 	 with dimension of 64×64×1, 
SGA-Net down-samples this high-resolution input to obtain the 
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middle-resolution input with dimension of 32×32×128: 𝐲𝟐 = D(𝐲𝟏)	 and 
the low-resolution input with dimension of 16×16×256: 𝐲𝟑 = D(𝐲𝟐) =
D[D(𝐲𝟏)], where D represents the downsampling operation. f! . is the 
bottom low-resolution sub-network containing three Conv+ReLU layers and 
three Deconv+ReLU layers. f!! . and f!! . 	 represent the four 
Conv+ReLU layers and four Deconv+ReLU layers of the middle-resolution 
sub-network, respectively. f!! . 	 and f!! .  represent the four Conv+ReLU 
layers and four Deconv+ReLU layers of the high-resolution sub-network, 
respectively. 

  
Eq. (1) demonstrates that the bottom low-resolution network firstly 

processes the low-resolution seismic data input 𝐲𝟑 	 with sequential 
connected Conv+ReLU layers and Deconv+ReLU layers, thereby extracting 
large-scale (i.e., global coarse) contextual information. 

                         
𝐱𝟑 = f! 𝐲𝟑 ，	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 
 

 To maintain dimensionality consistency when fusing two feature maps, 
we up-sample the output of low-resolution sub-network 𝐱𝟑	 to obtain the 
feature map 𝐱𝟑  with dimension of 32×32×128. Then, the up-sampled 
feature map 𝐱𝟑 	 is propagated into higher resolution, i.e., the 
middle-resolution sub-network. 𝐱𝟑 	 and the output of 𝐲𝟐 	 with four 
Conv+ReLU layers: 𝐱𝟐 = f!! 𝐲𝟐 	 are together used as inputs to the DSA 
module, thereby obtaining the output of middle-resolution 𝐱𝟐. The mapping 
relationship between 𝐲𝟐	 and 𝐱𝟐	 can be expressed as: 
 
                 

 𝐲𝟐 → 𝐱𝟐:	 𝐱𝟐 = f!! A f!! 𝐲𝟐 ;U 𝐱𝟑 ,                      (2)	
 
where U	 denotes the upsampling operation; A	 represents the DSA module. 
Obviously, as shown in eq. (2), the SGA-Net utilizes the 𝐱𝟑	 containing 
local global features to guide the establishment of the mapping relationship: 
 𝐲𝟐 → 𝐱𝟐. Similarly, this mapping relationship is described in eq. (3): 
                         

 𝐲𝟏 → 𝐱𝟏:	 𝐱𝟏=f!! A f!! 𝐲𝟏 ;U 𝐱𝟐     .                      (3)  
 
 Eq. (2) shows that SGA-Net uses the contextual information extracted at 
middle-resolution to guide the extraction process of local fine features at 
high-resolution scale. In summary, to take full advantage of these 
informative multi-scale features extracted at different resolutions, SGA-Net 
adopts the self-guided strategy to achieve the guidance from global coarse 
features to local fine features. 
 
 
DSA module 

 
 In this section, we design a DSA module with two inputs to allocate 

more available resources to the most informative features (Vaswani et al., 
2017). The concrete architecture of DSA module is shown in Fig. 2 and its 
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two inputs are 𝐱𝟐  and 𝐱𝟑 or 𝐱𝟏 and 𝐱𝟐. In this section, we take the DSA 
module in the high-resolution sub-network as an example to describe its 
workflow. The DSA module firstly starts with two connected 
3×3Conv+ReLU layers, and the following downsampling operation reduces 
the resolution of feature map (i.e., from 64×64 to 32×32) and also increases 
the channel number from 64 to 128 to avoid the possible information loss. 
Secondly, the 1×1Conv+ReLU layer not only extracts finer features, but 
also alleviates the extra computational cost caused by the increase in 
number of channels. Thirdly, the upsampling operation recovers the feature 
map with size of 32×32×128 to its original dimension 64×64×64. Finally, 
the probability distribution of features is generated via a sigmoid layer. The 
basic function of DSA module mainly includes two aspects: (1) the fusion 
of global coarse features at low-resolution and finer features at higher 
resolution; (2) highlighting the features conductive to the separation of 
signals and noise. 
	

	
 
Fig. 2. Architecture of the DSA module. 
 
TRAINING DATASET AND PROCESS 
 
Dataset 
 
    The commonly-used supervised strategy (Zhang et al., 2017) is 
utilized to train the network, so we need to construct a pair of signal dataset 
and noise dataset (Yu et al., 2019). In this work, we utilize forward 
modeling method to generate some theoretical clean data which is used to 
construct the signal dataset of SGA-Net. Specifically, to ensure the diversity 
of signal dataset, we firstly construct 50 forward models with different sizes 
(i.e., distance and depth) and velocity distributions; representative four of 
them are displayed in Fig. 3. Secondly, some artificial seismic wavelets with 
different central frequencies are used as the source, so as to generate a 
number of theoretical clean seismic records by using elastic wave equation 
and finite difference method; the detailed information of forward modeling 
is shown in Table 1. Finally, we extract 9840 64pixel×64pixel signal 
patches from these clean records and these extracted signal patches after 
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normalization are the signal dataset of SGA-Net. For noise dataset, we 
select a real seismic passive record from which 9730 64pixel×64pixel noise 
patches are extracted. In Fig. 4, we display 36 signal patches and 36 noise 
patches. 
	
	

	
 
Fig. 3. Four of the aforementioned 50 velocity forward models. 
 
 
 
Table 1. Detail information of forward modeling in signal dataset. 

 
 
 

	

Parameters    Specifications 

Source Seismic wavelets (Ricker, symmetrical, 
single) 

Central frequency of seismic wavelets 
(Hz) 15-35 

The size of forward models (km) 1.5-5 (distance); 1.5-4(depth) 
Spatial interval between two receivers 
(m) 10-30 

Sampling frequency (Hz) 500 
Density (kg/m3) 1900-2900 
Wave velocity (m/s) 1500-6000 
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Fig. 4. Some signal and noise patches of the constructed training dataset.  
 
Training process  

 
 Noisy seismic data: 𝐲 = 𝐞 + 𝐯	 is input into the SGA-Net, where 𝐞 

and 𝐯	 stand for signals and noise, respectively. The purpose of network 
training is to optimize the trainable parameters θ = 𝐰, b , where 𝐰	 and 
b	 represent weights and bias, respectively. Then, the well-trained model 
will be able to express the implicit mapping relationship: 𝐞 = F(𝐲; θ), 
where F	 stands for the mapping relationship and 𝐞 is the predicted signals. 
In this paper, we utilize the mean square error (MSE) loss function to train 
the network and its concrete expression is shown in eq. (4): 

   
L!"#(θ) =

!
!"

F 𝐞! + 𝐯!; θ − 𝐞𝐢 !
!!

!!! ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4) 
 
where B is the batch size; 𝐞! !!!!  represents B (batch size) signal patches 
randomly selected from the signal dataset; 𝐯! !!!!  denotes B (batch size) 
noise patches randomly selected from the noise dataset, and . !	 stands 
for the the Frobenious norm. 
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 All experiments including training and testing were carried out in the 

Matlab (2016a) environment, and the used personal computer is configured 
as CPU (Intel i9-9990K, 3.6GHZ), Windows 10 64-bit operating system, 
16GB RAM, and NVIDIA GeForce GTX 1050Ti. The hyper-parameters of 
SGA-Net are set as follows: network depth (i.e., the number of Conv+ReLU 
layers and Deconv+ReLU layers) 30, batch size 128, patch size 64×64, 
epoch number 50 and each epoch contains 1256 iterations, size of 
convolutional kernel 1×1 and 3×3, learning rate [10-3,10-5], and optimizer: 
Adam. In this training process, we leverage the commonly-used stochastic 
gradient descent (SGD) method to implement the back propagation of 
gradient. The concrete training process of SGA-Net is provided in 
Algorithm 1. 

 
 
 

Algorithm 1. The concrete training process of SGA-Net. 
 
Algorithm 1 Training process of SGA-Net 
Require: B, batch size; D! 	 signal dataset; D! 	 noise dataset; N, epoch 
number; K, iteration number in each epoch. 
1. For I=1, 2, 3, ……, N do 
2. For J=1, 2, 3, ……, K	 do 

3.  Sample 𝐞! !!!! ∈ D!, B	 signal patches randomly selected from the 
signal dataset. 

4.  Sample 𝐯! !!!! ∈ D!, B	 noise patches randomly selected from the 
noise dataset. 

5. 
 Number  a! !!!! , B	 random constants ranging from 0.5 to 3; these 

constants are used to adjust the energy of noise patches and thus 
generating noisy inputs with different SNRs. 

6.  Sample  𝐦! !!!
! =  a! !!!! × 𝐯! !!!! , B 	 noise patches after 

amplitude adjustment. 

7.  Sample   𝐲! !!!! =  𝐞! !!!! +  𝐦! !!!
! , B 	 noisy patches with 

variable SNRs. 

8.   Input  𝐲!!" !!!
! =  𝐲! !!!! / max 𝐲! !!!

! , B 	 noisy patches after 
normalization. 

9.  Label	  𝐞!!" !!!
! =  𝐞! !!!! / max 𝐞! !!!

! , B 	 signal patches after 
normalization. 

10. 
 θ ← ∇!

!
!

F(𝐲!!") − 𝐞!!" !
!!

!!! , the calculation of MSE loss 
function.

	11. End for	

12. End for	
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RESULTS 
Synthetic example 

 
 Fig. 5(a) shows a velocity model not included in the 50 forward models 

used for the construction of training dataset. A Ricker wavelet with central 
frequency 30Hz is used as the source, generating the theoretical clean 
seismic record displayed in Fig. 5(b). We add some real seismic noise to this 
clean record, so as to obtain the noisy seismic record (Fig. 5c) whose SNR 
and root MSE (RMSE)  are -3.5468 dB and 0.3189, respectively. These 
two measurements are explained in detail in the Appendix. The noise added 
to Fig. 5(b) is extracted from a real passive source record and can be 
approximated as real random noise. 
 

	
 
 
Fig. 5. (a) A velocity forward model utilized to generate synthetic seismic data. (b) and 
(c) are corresponding synthetic pure and noisy seismic records, respectively. 
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Four competitive methods and their parameter settings  

 
 We select four competitive methods for the proposed SGA-Net, 

including ensemble EMD (EEMD; Wu and Huang, 2009) and robust PCA 
(RPCA; Wright et al., 2009) and two existing DL denoising frameworks: 
DnCNN and Res-Net. EEMD is a noise-assisted variant of EMD, which can 
mitigate certain interference of mode aliasing (Wu and Huang, 2009). 
Compared with the classical PCA, RPCA alleviates the strict requirement 
for certain distribution of noise (Wright et al., 2009). Res-Net and DnCNN 
are two classical architectures of CNN whose effectiveness has been 
demonstrated by natural images processing (He et al., 2016; Zhang et al., 
2017). 

 
Next, we briefly describe the parameter settings of these four competitive 

methods. EEMD decomposes the noisy record (Fig. 5c) into five intrinsic 
modes and the third and fourth are considered as the modes representing 
signals; standard deviation ratio is 0.6. The weight of sparse error term is 
0.04 when PPCA is applied. For DnCNN, we set it hyper-parameters as 
batch size 64, convolutional kernel 3×3, network depth 20, learning rate 
[10-3, 10-5], and epoch number 60. The hyper-parameters of Res-Net are 
batch size 64, convolutional kernel 3×3, learning rate [10-3, 10-5], network 
depth 35, and epoch number 50. The parameter settings of EEMD and 
RPCA mainly considers the denoising performance, while the two DL 
competitive methods also need to consider the time-cost (mainly training 
time-cost). In addition, to be fair, we utilize the same dataset to train 
DnCNN and Res-Net, which is consistent with the proposed SGA-Net. 

 
 
The comparison of denoising performance 

 
The three well-trained models derived from the three DL methods, 

EEMD and RPCA are used to handle the noisy record plotted in Fig. 5(c). 
We display the five denoised results in Fig. 6. Although EEMD and RPCA 
can remove lots of random noise, there is still some visible noise remaining 
in their denoised results (Figs. 6d and 6e). Moreover, the continuity of 
events needs to be enhanced further. As can be seen from Figs. 6(a), 6(b), 
and 6(c), the three DL denoising methods show significantly improved 
denoising performance compared with EEMD and RPCA. SGA-Net, 
Res-Net, and DnCNN works well in noise attenuation (i.e., almost all 
random noise has been removed) and most of the recovered events show 
good continuity. Furthermore, incremental SNR of Figs. 6(a), 6(b), and 6(c) 
is visible to the naked eye. After careful observation, we can discover that 
the proposed SGA-Net shows stronger ability in recovering some weak 
signals. Specifically, SGA-Net can recover the weak reflected signals 
marked by red arrows, which can not be recovered by the two competitive 
DL methods.	
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Fig. 6. (a)-(e) are the denoised results of synthetic noisy seismic record (Fig. 5c) by using 
SGA-Net, Res-Net, DnCNN, EEMD, and RPCA, successively. 
 

 
 Fig. 7 plots the corresponding removed noise by using the five denoising 

methods. In the removed noise by using EEMD and RPCA, obvious signal 
leakage suggests that the two methods seriously weaken the energy of 
signals when accomplishing the denoising task. We can discover from Figs. 
7(b) and 7(c) that although Res-Net and DnCNN show good performance in 
noise suppression, but their ability to protect signals still needs to be 
enhanced further. On the contrary, except for some direct signals indicated 
by red arrows, we barely observe any residual reflected signals in Fig. 7(a), 
demonstrating a relatively good equilibrium between noise attenuation and 
signal protection achieved by SGA-Net. 
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Fig. 7. (a)-(e) are the removed noise after applying SGA-Net, Res-Net, DnCNN, EEMD, 
and RPCA, successively.  
 
 
The analysis of F-K spectrum 

 
 To further compare the denoising performance in the frequency domain, 

Fig. 8 displays the F-K spectrum of clean record  (Fig. 5b), noisy record 
(Fig. 5c) and its five denoised results (Figs. 6a-e). In the first row of Fig. 8, 
the random noise severely contaminates the signals in frequency domain, 
especially in about 0-20 Hz low-frequency band. This spectrum aliasing 
phenomenon in low-frequency band greatly increases the difficulty of 
separating the signal from noise. The second row of Fig. 8 plots the F-K 
spectrum of denoised results by using the three DL methods. We hardly 
observe the components of residual noise in the three F-K spectrum, 
demonstrating the excellent performance of DL methods in noise 
attenuation. However, it can be discovered from Figs. 8(d) and 8(e) that the 
energy of signals is attenuated after applying Res-Net and DnCNN, which 
once again demonstrates their destruction to the signals. The extreme 
similarity between Figs. 8(a) and 8(c) suggests that the proposed SGA-Net 
protects the amplitude of signals well when attenuating the unwanted noise.  
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Fig. 8. The analysis of the f-k spectrum. 
 
 
SNR experiments  

 
To quantify the performance of different denoising methods, we calculate 

the SNR and RMSE of the denoised results shown in Fig. 6. Larger SNR 
and smaller RMSE suggest more complete noise attenuation and stronger 
signal protection, respectively. Table 2 lists the SNR and RMSE of the five 
denoised results shown in Fig. 6; the proposed SGA-Net corresponds to the 
optimal quantization result. Next, we display the local SNR of the five 
denoised results in Fig. 9; the adopted window size, vertical step, and 
horizontal step and 5×5, 1, and 1, respectively. In most cases, local SNRs 
displayed in Figs. 9(e) and 9(f) are lower than those in Figs. 9(b), 9(c), and 
9(d), indicating the inferior performance by using EEMD and RPCA. 
Among the three DL denoising methods, the proposed SGA-Net has the 
largest local SNR. 
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Table 2. The Comparison of SNRs (dB) and RMSE. 
  

Methods SGA-Net Res-Net 
DnCN

N 
EEMD RPCA 

SNR 14.8301 8.8857 
      

7.3840 
     

3.7110 
   2.4247 

RMSE 0.0384 0.0762 
      

0.0906 
     

0.1383 
   0.1603 

	
	
	

	
 
Fig. 9. The comparison of local SNRs after applying different methods. 
 

 
 We add real random noise with different energy to the synthetic clean 

seismic record shown in Fig. 5(b) and thus generating multiple synthetic 
noisy records exhibiting different SNRs. Afterwards, these five denoising 
methods are utilized to handle these noisy records with different SNRs and 
SNRs after denoising are plotted in Fig. 10. The black curve corresponding 
to SGA-Net is always obviously higher than the other four curves 
corresponding to the four competitive denoising methods. SGA-Net can 
improve the SNR of six synthetic noisy seismic records by about 18 dB, 
illustrating its favorable robustness to seismic data with different SNRs. 
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Fig. 10. Testing of SGA-Net to different SNRs. 
 
Real example 
 
The denoised result of common shot gathers 
 

 In this section, we leverage a real 3D shot gather to testify the 
effectiveness of SGA-Net. Fig. 11(a) displays a common-shot-point (CSP) 
record in the 3D shot gather and signals are seriously contaminated by lots 
of surface waves with strong energy and random noise caused by wind. The 
five methods adopted in the above synthetic example are used to deal with 
this real noisy seismic record. For the three DL denoising methods, we still 
adopt the three original trained models without training again for real 
seismic record. EEMD retains the second, third, and forth modes as the 
components associated with signals and the ratio of standard deviation is 0.9. 
In the loss function of RPCA, the weight on sparse error term is set to be 
0.032. We plot the denoised results by using SGA-Net, Res-Net, DnCNN, 
EEMD, and RPCA in Figs. 11(b)-(f), successively. EEMD and RPCA 
exhibit limited effect in attenuating random noise and surface waves, lots of 
background noise still remains in their denoised results (i.e., Figs. 11e and 
11f), which leads to the poor continuity of events recovered by these two 
traditional methods. On the contrary, we can discover from Figs. 11(b), 
11(c), and 11(d) that the denoising performance of the three DL methods is 
clearly superior to that of EEMD and RPCA. On the contrary, as can be 
discovered from Figs. 11(b), 11(c), and 11(d), the three DL methods exhibit 
obvious performance advantages over the two traditional methods. 
Specifically, SGA-Net, Res-Net, and DnCNN all achieve complete noise 
suppression and significantly enhance the continuity of events. After careful 
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comparison, it is discovered that some weak events recovered by SGA-Net 
are more continuous than those recovered by Res-Net and DnCNN, 
demonstrating stronger protection ability of SGA-Net to signals. To further 
prove this point, as shown in Fig. 11, we zoom two areas labeled 1 and 2 in 
the five denoised results; in these enlargements, events recovered by 
SGA-Net show better continuity. 
 
	

	
 
 
Fig. 11. (a) displays a real CSP record (trace interval 20m; sampling frequency 500 Hz) 
and its denoised results by using the five methods are shown in (b)-(f).	
	

 
 In addition, we plot the corresponding five difference records (i.e., the 

information illustrated in Fig. 11a minus the information illustrated in Fig. 
11b-f, respectively) in Fig. 12. As indicated by red arrows, some relatively 
obvious signal leakage in Figs. 12(b)-(e) demonstrate the amplitude decay 
of signals after denoised by the four competitive methods. As shown in Fig. 
12(a), SGA-Net significantly alleviate the degree of signal leakage, 
illustrating that it does less destruction to the energy of signals when 
suppressing the background noise. 
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Fig. 12. (a)-(e) plot the difference records corresponding to the five denoising methods. 

 
 Fig. 13  plots the F-K spectrum of the five denoised results shown in 

Figs. 11(b)-(f). As shown in Figs. 13(d) and 13(e), some evident residual 
noise components indicate the impaired performance of EEMD and RPCA. 
In addition, EEMD mistakenly filters the low-frequency signals overlapping 
with noise in about 0-15 Hz frequency band. As can be discovered from 
Figs. 13(a), 13(b), and 13(c), SGA-Net, Res-Net, and DnCNN can 
completely separate signals from noise in shared frequency band and there 
is almost no residual noise component in the three F-K spectrum. 
Nevertheless, as marked by white arrows and shown in white rectangles, 
signals in Fig. 13(a) are stronger, more continuous, and clearer than those in 
Figs. 13(b) and 13(c); this phenomenon demonstrates that SGA-Net is more 
protective of signal amplitude compared with Res-Net and DnCNN. In both 
synthetic and real examples, SGA-Net proposed in this work performs better 
than Res-Net and DnCNN in signal recovery, especially some weak signals, 
which demonstrates the positive effect of self-guided strategy adopted in 
SGA-Net. 

 
 As mentioned above, the noise dataset fed to SGA-Net, Res-Net, and 

DnCNN is mainly composed of random noise and does not include surface 
waves. However, these three DL methods still show good attenuation effect 
on surface waves, which seems to contradict the basic principle of DL 
denoising methods. We will give a detailed explanation of this confusing 
phenomenon and add a corresponding experiment to support our 
explanation in the following discussion part. 
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Fig. 13. The comparison of F-K spectrum (a)-(e) are the F-K spectrum of the five 
denoised results after applying the five methods. 
 

 
 Except for the denoising performance, the generalization of trained 

model is also a widely-concerned issue for DL methods. To illustrate this 
point, we extract the other two CSP records from the same 3D shot gather. 
As shown in Fig. 14(a) and 15(a), these two CSP records are different from 
the CSP record shown in Fig. 11(a). For example, events in Fig. 14(a) are 
more complex; surface waves in Fig. 15(a) have stronger energy. As can be 
seen from Fig. 14(b)-(f), the three DL denoising methods still show superior 
performance to the two conventional methods both in background noise 
suppression and signal protection; enlargements in Figs. 14(b), 14(c), and 
14(d) prove the best performance of SGA-Net in recovering weak signals 
among the three DL methods. In Fig. 15(b)-(f), the proposed SGA-Net still 
exhibits better denoising performance than the other four competitive 
methods. 

  
 When dealing with these two CSP records, we adjust the parameters of 

EEMD and RPCA to obtain the best possible denoised results; concrete 
parameter settings are described in the captions of Figs. 14 and 15. 
Therefore, compared with traditional methods based on mathematical and 
physical frameworks, DL denoising methods have advantages not only in 
denoising performance, but also in intelligence. Specifically, the three DL 
methods: SGA-Net, Res-Net, and DnCNN can effectively handle different 
CSP records by using the well-trained models without parameter fine-tuning. 
However, these two traditional methods: EEMD and RPCA need to 
fine-tuning some parameters based on experience or even visual observation 
to obtain the best possible denoised results. 
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Fig. 14. (a) is another CSP record with complex events and its five denoised results are 
shown in (b)-(f). Parameter settings of two conventional denoising methods: second, 
third, forth mode and 0.6 for EEMD; 0.03 for RPCA.     
 

	
Quantitative analysis 

 
Both SNR and RMSE need a standard reference (i.e., the corresponding 

theoretical pure record) to quantify the denoising performance of different 
methods, so they can not be applied to the above three real examples. 
Structure similarity (SSIM) index (Zhou et al., 2004) can measure the 
similarity between two input images. The Appendix will provide a detailed 
description of this measurement. To quantify the denoising performance of 
five methods in the real example, real denoised result and its corresponding 
difference record are used as the two input images of SSIM. In this section, 
SSIM index is calculated in a 8×8 sliding window and then we can calculate 
their average representing the similarity of overall data. Smaller average 
SSIM index illustrates the low similarity between the two input images and 
better performance in seismic data denoising. Table 3 provides the average 
SSIM index of the denoised results shown in Figs. 11, 14, 15 and the 
proposed SGA-Net always exhibits the smallest average SSIM index. 
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Fig. 15. (a) displays a CSP record with stronger surface waves and its five denoised 
results are shown in (b)-(f). Parameter settings of two conventional denoising methods: 
second, third, forth mode and 0.8 for EEMD; 0.028 for RPCA. 
 
 
Table 3. Comparison of average SSIM indexes. 
 

Methods SGA-Net Res-Net DnCNN EEMD RPCA 
Real record 

1 
2.45×10-2 5.22×10-2 4.69×10-2 6.59×10-2 7.20×10-2 

Real record 
2 

1.53×10-2 2.39×10-2 2.58×10-2 4.71×10-2 6.73×10-2 

Real record 
3 

2.68×10-2 4.61×10-2 5.99×10-2 6.62×10-2 7.11×10-2 
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Generalization 
 
 The generalization of DL methods is a widely-concerned problem due to 

its time-consuming training, especially when facing some real geophysical 
problems. In the above three real examples, the proposed SGA-Net can 
process three different CSP records by just using one trained model, 
showing relatively good generalization. These three CSP records are from 
the same shot gather, so they are similar in noise type, noise property, and 
the frequency distribution of signals. However, would the original trained 
model still perform well on some completely different seismic data without 
training again? Fig. 16(a) displays a real seismic record received by the 
distributed optical fiber acoustic sensors (DAS) deployed in a well. This 
downhole DAS seismic record is totally different from the above three CSP 
records. On the one hand, the noise in DAS seismic record is mainly 
instrument noise, rather than the surface waves and random noise. On the 
other hand, the central frequency of signals in downhole seismic data is 
usually higher than that of signals in surface seismic data. We utilize the 
original model to deal with this DAS seismic record and its denoised result 
is plotted in Fig. 16(b). Obviously, the performance of SGA-Net 
significantly degrades due to the huge difference between the adopted 
training dataset and the processed DAS seismic data. 

     
   To support the above view, we redesign a training dataset for DAS 
seismic record. For signal dataset, we extract 20096 64×64 signal patches 
from a large number of synthetic DAS seismic records generated by 
performing forward modeling operation on 20 different downhole velocity 
models. Detailed information of forward modeling is attached in Table 4. 
For noise dataset, 25781 noise patches with size of 64×64 are intercepted 
from some real DAS seismic records. We utilize this redesigned dataset to 
retrain the SGA-Net and the trained model named model 1 is leveraged to 
process the real DAS seismic record shown in  Fig. 16(a).  As shown in 
Fig. 16(c), compared with Fig. 16(b), denoising performance of SGA-Net is 
greatly improved after trained by the redesigned dataset. Model 1 removes 
nearly all of the background noise and also well recovers the desired signals 
including the up-going reflected signals with weak energy. The obvious 
improvement in denoising performance after training by redesigned dataset 
demonstrates the importance of suitable training dataset to DL denoising 
methods. 
 
   Due to differences in data acquisition geometry (surface and downhole) 
and in exploration environments (grass, desert, hilly, and marine), different 
seismic data often exhibits completely different properties (Zhong et al., 
2015). Therefore, at this stage, it is difficult to achieve strong generalization 
of a single training model in seismic data denoising, i.e., one single model 
can not deal with seismic data with completely different properties 
effectively. What we want to illustrate is that enhancing the generalization 
of trained models is a bottleneck that DL must overcome to move towards 
practical applications in seismic exploration. Transfer learning is most likely 
to be a viable solution. 
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Table 4. Concrete settings of forward modeling in DAS dataset. 
 

 
 
	 	 	 	 	 	

 
 
 
Fig. 16. (a) is a real downhole seismic record received by DAS (trace interval 1m, 
sampling frequency 2500Hz). (b) and (c) are the denoised results after applying the 
original model and model 1. In Fig. 16(a), signals are mainly contaminated by three 
kinds of noise: horizontal noise indicated by red arrows, optical low-frequency noise 
marked by red pentagrams, and fading noise indicated by yellow arrows. 
 

Parameters    Specifications 

Source Ricker, symmetrical, single 

Central frequency of seismic wavelets (Hz) 40-80 

Wave velocity(m/s) 1500-5000 

The size of forward models (km)        1-2(distance); 0.5-5(depth) 

Spatial interval between two receivers (m) 1 

Sampling frequency (Hz) 2500 

Density (kg/m3) 1800-2700 

Offset (km)                                                          0.1-1 
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DISCUSSION 
 
Why can SGA-Net attenuate the surface waves in real example?  

 
 In the first section of ‘Real example’, the noise dataset fed to SGA-Net 

is composed of random noise data, but it still performs well on the 
attenuation of surface waves which is a typical coherent noise. We speculate 
that this confusion is mainly due to the large differences between signals 
and surface waves in velocity and central frequency, especially the former. 
Concretely, generally speaking, the velocity of surface waves ranges from 
300 m/s to 800 m/s which is obviously lower than the wave velocity range 
shown in Table 1. Hence, the trained model will distinguish signals from 
surface waves according to the wave velocity difference. 

 
 In this section, we add a corresponding experiment to demonstrate our 

view. Concretely, we adjust the wave velocity range to 500 m/s-6000 m/s 
which overlaps with the wave velocity range of surface waves; all other 
settings for training dataset remain the same. Afterwards, the adjusted 
training dataset is used to fed the SGA-Net and the trained model is named 
model 2. We utilize model 2 to handle the three CSP records (Figs. 11a, 14a, 
and 15a) and the corresponding results are plotted in Fig. 17. Some residual 
surface waves appear in the three denoised results by using model 2, 
illustrating the degraded performance of SGA-Net on surface wave 
suppression and the reasonableness of the above speculation. 

 
 

The number of trainable parameters and training time-cost 
 
 In this section, we calculate the number of trainable parameters (i.e., 

weights and bias) when using these three DL denoising methods. For 
DnCNN, the number of trainable parameters is 

 
 3×3×64×1+(3×3×64+64)×64×(C1-2)+(3×3×64+64)×1;  
 

where C1 represents its network depth;  The number of trainable 
parameters of Res-Net is 

 
 3×3×64×1+(3×3×64+64)×64×(C2-2)+(3×3×64+64)×1;  
 

where C2 represents the network depth of Res-Net; For the proposed 
SGA-Net, the number of trainable parameters is 

 
3×3×64×1+(3×3×64+64)×64×(C3-2)+(3×3×64+64)×1+(3×3×128+128)×12
8×C4+(3×3×256+256)×256×C5+(3×3×64+64)×64×3+(1×1×128+128)×128+
(3×3×128+128)×128×3+(1×1×256+256)×256;  

 
where C3, C4, and C5 are the network depth of high-resolution, 
middle-resolution, and low-resolution sub-networks, respectively. In this 
paper, C1, C2, C3, C4, and C5 are equal to 20, 35, 8, 8, and 6, respectively. 
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 The number of trainable parameters of DnCNN, Res-Net, and SGA-Net 
are 738496, 1352896, and 6268096, respectively. More trainable parameters 
lead to the disadvantage of SGA-Net in time-cost. Concretely, the training 
time-costs of SGA-Net, Res-Net, and DnCNN are about 11.3, 8.3, and 7.2hr, 
respectively. How to shorten the training time-cost while ensuring the 
denoising performance is our future research goal, i.e., the lightweight of 
DL methods. 
	

	
 
Fig. 17. (a), (b) and (c) are the denoised results of the three CSP records by using model 2. 
 
CONCLUSION 
 

 In this paper, we propose a novel denoising architecture of CNN based 
on self-guided strategy, called SGA-Net, and apply it to multiple synthetic 
and real seismic records. Compared with conventional seismic denoising 
methods, this proposed SGA-Net not only works better in noise attenuation 
and signal preservation, but also automates the denoising process. Moreover, 
SGA-Net has stronger ability to recover the desired signals, especially weak 
signals, in comparison to some existing powerful DL denoising methods. 
Our main contributions are summarized as follows: 

 
(1) To our best knowledge, few works consider the useful multi-scale 
features when utilizing DL methods to denoise seismic data. We introduce 
the multi-scale strategy to extract both global coarse and local fine features 
from seismic data with different resolutions, so as to promote the accuracy 
of denoising mapping relationship established by DL methods. 
(2) We use the self-guidance strategy to achieve the self guidance from 
global coarse to local fine features. Moreover, a new spatial attention 
module with two inputs is designed to fuse the multi-scale features extracted 
at different resolution. In a word, we provide a feasible workflow to make 
full use of the multi-scale features extracted at different resolutions. 
(3) In real example and discussion, we illustrate that the generalization and 
training time-cost are still two bottlenecks need to be solved before applying 
DL methods to real geophysical problems, which are also our future 
research goals. 
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APPENDIX  
 
 In this Appendix, we review the algorithms for SNR, RMSE, and SSIM. 
The SNR and RMSE (Dong et al., 2019a) are calculated by 

	

SNR(dB) = 10log!"
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,                       (A-2) 

 
where 𝐞 n,m and 𝐝 n,m stands for theoretical noise-free record and 
denoised record, respectively; N	 and M represent the size of data. 
 

As shown in eq. (A-3), the SSIM index is composed of three independent 
components (Zhou et al., 2004). 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 
SSIM(𝐃,𝐑) = l(𝐃,𝐑) ∙ c(𝐃,𝐑) ∙ s(𝐃,𝐑)
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where 𝐃  and 𝐑  represent the denoised result and its corresponding 
difference record; µ𝐃 and µ𝐑 are the means of 𝐃 and 𝐑, respectively; r!, 
r!,  r! represent three small constants for avoiding instability; δ𝐃!  and δ𝐑!  
stand for the variances of 𝐃  and 𝐑 , respectively; δ𝐃𝐑  denotes the 
covariance of 𝐃 and R. 


