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INTRODUCTION

Microseismic monitoring is a teck
hydraulic fracturing that the main work
subsurface fracturing of rock (Maxwell ¢
standard processing workflow, microseisi
process which it is removing a large am
quantity of computation in subsequent prc
other hand, data with a higher signal-t
through enhancement, which greatly im
effect. Commonly, the microseismic pro
single-channel method and multi-channel
et al., 2010). Due to the abundant infoi
multi-channel method is getting a bett
method generally.

Typically, downhole microseismic
fracturing effect through source locatic
usually needs to be pretreated, such as
present, there are many methods used ii
time-frequency analysis (Han et al., 2015
learning (Pilikos et al., 2017)

Among the time-frequency analy
dennicino effect hv neino the freanencv ¢
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(2019) apply the Bayesian algorithm tc
whether it is noise or signal through
reconstruct the dictionary and sparse coe
denoised data.

In downhole microseismic monitor
usually 4000Hz, a large amount of randc
calculation efficiency when processing d
needed to distinguish random data from
computational efficiency. According to tl
are divided into a single-channel methoc
channel method (Trow et al., 2018). In
multi-channel is better. According to the
include characteristic-function (CF), cros
based methods (Mousavi, S. M., C. A. L
But in recent years, machine learning m
microseismic event detection.

Jiang et al. (2019) used the cross
microseismic event with the morpho
microseismic data to select the valid con
components to represent the CF of dete
method performs well in low SNR micro

of low SNR of ground microseisms, L
Akaike information criterion (Fact-AT()
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energy attenuate quickly, so it highlights the S-wave frequency and
suppresses the P-wave frequency generally twice. In the frequency domain,
the ACEF is the result of frequency domain multiplication due to Convolution
Theorem. Therefore, the energy attenuation P-wave is suppressed and the S-
wave is enhanced in the frequency domain. To avoid this weakness of the
method, take the square root of the frequency domain of ACF.
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Fig. 1. (a) Original traces. (b) Noisy traces. (c¢) Denoising result.

According to the detection method, getting CF describes the frequency
energy change across the stacking ACF. However, this method calculates the
result slowly, which is contrary to the original intention of saving computing
resources. Thus, in this paper, we propose a method of microseismic data
detection based on the changes in ACF median and neighboring values in
microseismic data and random noise. Since only the median and neighboring
values of ACF need to be calculated, the calculation speed changes faster
than the method of ACF energy stacking.



METHOD

Enhancement

Due to the frequency of the P-way
and the energy of the P-wave attenua
highlight the S-wave and suppress the P-
the convolution filter will suppress the
situation about the P-wave suppression,
modify the ACF filter. Due to the AC
Fourier transform of the square of the da
is square in frequency in the domain wh
original data and eliminate the influence ¢

According to the new method for «
carry out the modified ACF whose medi:
of its neighboring value, then, stack the .
simple filter. To eliminate the suppress
taking the square root of the frequency dc
Fourier transform. The formula is shown

f P
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fnew = fm "W

where wis the weight coefficient,dis the
the mirror average processing, andf, is 1

data by using convolution filtering. The fc

X =f =x i

1 new 1

where X; is the original data, { . is tt

> Tnew

enhancement. Simplify the above steps

(Fig. 2).
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Detection

In order to deal with a large amount of data, the data are usually
preliminaries detected before processing the data. The preliminary detection
focuses not on the identification of data, but on removing numerous invalid
data fast. Liu et al. (2017) propose a method that stacks autocorrelation
energy to detect the data. However, the calculation speed of this method is
slow and fails to meet the requirements of fast processing for preliminary

detection. Therefore, we propose a new method to preliminarily detect based
on autocorrelation.
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Fig. 3. (a) Synthelic periodic signal. (b) ACF ofl the synthelic periodic signal. (¢) Random
noise. (d) ACF of random noise.

According to the difference of ACF between random noise and
periodic signal (Fig. 3), we propose a method to detect based on the median
and neighboring of ACF. In Fig. 3, the median value in ACF of random
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noise is the abrupt value relative to the ne
the median value is mild in ACF of peric
ACF can ignore the time difference betw
proposed method of detecting microseisi
of the ratios of neighboring and median.
needing the median and neighboring valu
faster than the stacking of the ACF energy

Due to the symmetry of the ACF, tl
the left neighboring value of the medi
method is defined as shown below:

CF(i) = jzad?

act
n=m+l1

where the aCfi[O] is the median val

neighboring value of the median valuc
data, nis the Sampling points in the time v
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Fig. 4. (a) A trace data in the synthetic array data. (b) The [requency spectrum ol (a). (c}
The original stacking [ilter. (d) The [requency spectrum ol (¢). () The improved stacking
filter. (f) The frequency spectrum of (e).

In Fig. 4, the filters are {rom the synthetic data which is the S-wave
setting low frequency and P-wave is setting high frequency. In addition, the
energy of the P-wave is lower than that of the S-wave. Through spectrum
comparison, it can be seen that although the noise suppression of the
improved method is worse than the original method, the improved method
can better preserve the frequency of low-energy valid data.

The synthetic pure data, adding noise data ,and the result of
enhancement by the original method and proposed method are shown as

below in Fig. 5.
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Fig. 5. (a) The synthetic array data without noise. (b} The synthetic array data with noise.
(¢) The result of denoising by the original method. (d) The result of denoising by the
improvement method.
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In Fig. 5, the both original method and the proposed method have
suppressed the noise, but the original method removes more background
noise than the proposed method, which can also be known from the filter
spectrum (Fig. 4). Even though the former can remove more noise, the latter
can reduce the suppression of P-wave and get clearly a first break.

Detection

In order to improve the computational efficiency of detection, the
proposed method only uses the median and neighboring to detect the data.
Therefore, this paper compares the computational efficiency and robustness
of the two methods with synthetic data. The computational etficiency can be
evaluated by computation time. Regarding robustness, we construct the data
which includes the dead trace (excluding valid data} in array data.
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Fig. 6. (a) The synthelic array data without a dead trace. (b) The resull o[ the detection.
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Fig. 7. (a) The synthetic array data with dead trace. (b) The result of the detection.

In order to verify the effectiveness of the proposed method, we
synthesize 6 trace array data with noise. Fig. 6 is the synthetic array data
without a dead trace and its detection result, and Fig. 7 is the svnthetic array
data with dead trace and its detection results. It shows that the proposed
method is effective and has certain adaptability to death trace.

FIELD MICROSEISMIC DATA

Enhancement

In order to further verify the effectiveness of the proposed method, we
use field microseismic data to test.
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The filters and their spectrum are shown in Fig. 8, compared with the
field data, the original method suppresses the P-wave frequency, and the
improved method retains the P-wave frequency.
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Fig. 8. (a) A trace data in the field array data. (b) The frequency spectrum of (a). (c) The
original stacking [ilter. (d) The [requency spectrum ol (c). (e} The improved stacking
filter. (f) The frequency spectrum of (e).

According to Fig. & Although there are still some reservations about
some high frequencies, the improved filter retains the frequency of P-wave
better. Finally, the field microseismic array data are denoised by using a
convolution filter, and the result of enhancement is shown as below in Fig, 9
where we compare the original method with proposed method and Fig. 10 is
its corresponding time spectrum.
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Fig. 9. (a) The original field data. (b} The enhancement results of original method. (c)
The enhancement results of improved method.
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Fig.10. (a) The time spectrum of original trace data. (b) The time spectrum of the original
method result. (¢) The time spectrum of the improved method result.

Due to the energy of the S-wave being strong and the energy of the P-
wave being too weak, it is obvious that the P-wave is suppressed in two
methods. Although not obvious, the improved method can reduce the
situation of P-wave being suppressed (as shown in the red circle in Fig. 10).
There is a phenomenon that after the original method is processed, the
background high-frequency noise is removed, but the obvious low-frequency
fluctuation is retained, which is obviously not conducive to the processing of
microseismic. And this phenomenon has not happened in the result
processed by the improved method. The original method almost only retains
the signal frequency band, but the signal and the noise frequency overlap. If
the original method is used to denoise, the boundary between the signal and
the noise will be blurred (Vera Rodriguez et al., 2012; Mousavi and
Langston, 2016). The improved method not only retains the low frequency
but also retains part of the high frequency so that the signal mutation part is
retained.



Detection

In this part, the proposed detection method is applied to the field data
to further verify the effectiveness of the method. [n order to verifyv that the
method should deal with the abnormal situation of the field data, the field
data used in the experiment include several typical data with high SNR, low
SNR, and dead trace. The result of detection is shown below in Figs. 11-13.
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Fig. 11. (a) The [ield microseismic array dala with high-SNR. (b) The CF delection of the
proposed method.

Fig. 11 shows the 33 trace field data with high SNR and its result of
detection by the proposed method. The results show that the proposed
method is feasible for the field data and the detection value of background
noise is less than 0.5. Therefore, for this block data, we set a threshold of 0.3,
and take the received data with a detection value greater than 0.5 as valid
data and the received data less than 0.5 as invalid data.
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Fig.12. (a) The [eld microseismic array data with low-SNR. (b) The CF detection of the
proposed method.

Fig. 12 shows the 33 trace ficld data with low SNR and its result of
detection by proposed method. In array data of Fig. 12, most of trace is
getting the low-SNR. Compared with Fig. 11, the detection value in Fig. 12
is less obvious than that in Fig. 11, but it can still be detected by the
threshold method.



Indication

AN f WO
ar“\w WAV J/ \wﬂ

\ . . | L | |
1000 2000 3000 4000 5000 6000 7000 8000 92000 10000
Sample

Fig. 13. (a) The field microseismic array data with dead traces. (b) The CF detection of
proposed method.

Fig. 13 shows the 33 trace field data with dead trace and its result of
detection by proposed method. In the array data of Fig. 13, some get high-
SNR, some get low-SNR and the rest are dead traces. Through the detection
results, show that the proposed method can still effectively detect the data.

Based on the basic principle of the detection method, we can know
that it mainly detects limited bandwidth data and filter random data. Thus, a
large number of invalid data are removed, to reduce the overall amount of
calculation.

CONCLUSION

It is an effect that enhances and detects the microseismic array data by
stacking ACF. However, the enhancement method is not conducive to the
treatment of microseisms because it suppresses P-waves and the calculation
of this detection method is slow. which is contrary to the original intention
of saving computing resources. Therefore, in this paper, we propose methods
to overcome the above shortcomings. According to the enhancement, we
change the way of filter construction to reduce the P-wave suppression by
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the original method and propose a more
method the proposed method has achi
problem about noise with the same freq
noise in field microseismic which a situ
each trace. Thus, the autocorrelation st
noise with a similar frequency attribute. ¢
to meet the rapid requirements of prelimii
attribute of median value to detect the da
exploring the data with the observable
shows that the noise with the limited
identified incorrectly. Therefore, this me
detection.
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