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ABSTRACT  
 
Qiao, Z.X., Chuai, X.Y., Xu, Z.W., Guo, N.C., Zhu, W., Zhang, J.F., Chen, W.  
and Xia, R., 2023. Seismic data enhancement based on Bayesian convolutional neural 
network. Journal of Seismic Exploration, 32: 407-425. 
 

The acquisition of high-quality seismic data is an important goal of seismic data 
processing. Traditional seismic data processing methods are usually used alone to remove 
noise or improve resolution. They can only improve the quality of seismic data from a 
certain point of view, and lack the protection of effective detail signals. In order to 
improve the quality of seismic data from whole angle, protect and highlight the details of 
geological structures such as faults and fault uplifts, this paper proposes to apply 
Bayesian Convolutional Neural Network (BCNN) to seismic data processing to enhance 
seismic data. BCNN is an organic combination of Bayesian theory and neural network, 
which can avoid network over-fitting and enable the network to learn deeper data features 
adaptively, with better robustness. In addition, the up-sampling operation at the end of the 
network model is conducive to preserving the feature information of seismic data in the 
low-resolution space. In this paper, the seismic data is enhanced based on F3 dataset, and 
compared with the general full convolutional neural network (FCNN) and construction-
oriented filtering methods. The results show that the proposed method can better 
highlight the structural details, improve the interpretability of seismic data, and is an 
effective means to enhance fault and uplift structures. 
 
KEY WORDS: seismic data, seismic data enhancement, resolution, Bayes,  
                artificial intelligence. 
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 INTRODUCTION 

 
 Seismic data processing is an important step in structural interpretation 
and reservoir prediction. Due to the low quality of the initial seismic data, 
the efficiency and accuracy (Chang et al., 2018; Li et al., 2023; Zhao et al., 
2022) of the work will be reduced if the data is directly used in the 
subsequent interpretation and inversion. For this reason, many methods have 
been proposed to obtain high quality seismic data, including singular value 
decomposition algorithm (Claerbout, 1971),  median filter (Bednar,  1983), 
f-x deconvolution (Canales, 1984; Liu and Duan, 2019), wavelet transform 
(Mallat, 1991; Chen and Song, 2018; Chen and Jin, 2015); Singh and Mittal, 
2014) and curve-wave transform (Hennenfent and Herrmann, 2006), 
empirical mode decomposition (Chen et al., 2017), dictionary learning (Lan 
et al., 2023). In 1971, Claerbout was the first to apply singular value analysis 
to the removal of background noise from seismic data, which opened a new 
direction for the development of seismic data processing and imaging 
methods. In 1983, Bednar applied the median filtering technique to seismic 
data enhancement, which improved the quality and reliability of seismic data. 
f-x deconvolution was proposed by Canales in 1984, and modified by 
Gulunay (1986), it has become a more common seismic data processing 
method. Mallat and Hennenfent combined wavelet transform and curvewave 
transform with seismic data processing in 1991 and 2006, respectively. The 
above methods usually have certain requirements for the prior knowledge 
and empirical rules of underground media, and are more sensitive to the 
initial model and parameter setting of the data. This limits its application in 
complex geological situations and also increases the subjectivity of 
processing. To this end, researchers have introduced image enhancement 
techniques into seismic data processing. These related techniques in the field 
of image processing provide a more advanced and automated method of 
seismic data enhancement by introducing new algorithms. And adapt to the 
processing needs of different geological conditions. Fuzzy set theory, 
histogram equalization and filtering technology are common image 
enhancement methods, but due to the limitations of the former two, which 
cause image distortion and high calculation cost, the filtering technology is 
more widely used (Singh and Mittal, 2014; Song-Tao and Gang, 2010). In 
2010, Yang Peijie applied directional filtering technology and holding 
filtering technology to seismic data to realize the enhancement of fault 
images (Yang et al., 2010). Chang-Qing (2012) improved the threshold 
function used in the traditional wavelet threshold algorithm by combining 
the characteristics of seismic data. Compared with the improved 
enhancement method, the seismic image contrast was higher and the edge 
was clearer and richer. In order to further improve the enhancement effect of 
seismic data, Yan et al. (2013) proposed a seismic image enhancement 
processing method based on anisotropic diffusion filtering, taking improving 
the signal-to-noise ratio of seismic data and protecting the fault structure 
information as the starting point. In 2018, by combining deconvolution and 
wavelet scaling, Alaei et al. (2018) designed a scale transform filter by 
dividing the obtained wavelet magnitude by the original value along the 
frequency axis of the deconvolution magnitude spectrum, and the resolution 
of the seismic trace was effectively improved after processing by the filter. 
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  With the development of artificial intelligence, data-driven seismic 

data processing methods emerge in an endless stream (Deng et al., 2017; 
Gómez, et al., 2020) and show better results than traditional methods (Kuang 
et al., 2021). In 2018, Song et al. proposed a deep convolutional self-coding 
neural network for removing random noise from seismic data, and compared 
it with classical wavelet and f-x deconvolution algorithms, the results show 
that this method has stronger denoising ability. In 2019, Wang and Nealon 
applied the 3D convolutional neural network to the enhancement and noise 
attenuation of seismic images, and constructed a training set of different 
noise levels using the difference in lens density. The network trained based 
on the training set highlighted the geological structure and was easy to 
interpret. In 2019, Wang et al. built a CNN denoising framework based on 
data generation and augmentation to solve the problem of insufficient 
seismic label data, and realized the denoising of CNN seismic data based on 
small samples. In 2020, Dong and Li proposed a convolutional 
countermeasure noise reduction network to solve the problem of low signal-
to-noise ratio in distributed optical fiber acoustic wave sensing and detection 
technology. The network improved on the basis of the generated 
countermeasure network, replaced the original generator in the 
countermeasure network with a noise canceller, and optimized the noise 
canceller. Effectively suppress the new noise caused by the bad coupling and 
recover most of the effective signal. In 2023, in order to make up for the 
limitations of the technology of improving the resolution of seismic data 
based on sparse peak inversion, Gao et al. (2023) combined the longitudinal 
reflectance information of field data and the geological structure 
characteristics, and trained a U-shaped network integrating residual blocks 
and attention mechanism to achieve a more consistent thin layer resolution 
effect. The application of artificial intelligence has greatly improved the 
efficiency of seismic data processing and interpretation under the premise of 
ensuring the accuracy (Wang and Nealon, 2019; Zhang et al., 2022; Li et al., 
2021; Oliveira et al., 2019; Qiu et al., 2021; Jin et al.. 2018). However, 
learning algorithms based on neural networks generally have the problem of 
overfitting, which causes the model to over-rely on the training data, thus 
reducing its generalization ability. The reason for this is that general neural 
networks perform a given task by learning examples and estimating the 
optimal value of each node weight without prior knowledge. However, 
networks that use point estimates as weights perform well on large datasets, 
while fail to express uncertainty in areas with little or no data, leading to 
overconfident or inferior decisions. 
 
 To solve this problem, this paper uses a type of BCNN based on 
variational inference. The combination of Bayesian concept and neural 
network can treat the weights in the neural network as random variables, and 
provide a clear prior probability for training by learning the distribution of 
each parameter. The addition of a prior is equivalent to providing a 
constraint and regularization for the network, thus preventing overfitting. 
Considering the robustness of Bayesian neural network to overfitting, this 
paper creates a dataset of small samples to train BCNN, and gives the 
parameter description of the network structure and the training results. In 
addition, the proposed method is compared with structure-oriented filtering 



 410 
 
 and general full-convolutional neural network (FCNN), and the results show 

that BCNN has more advantages in seismic data enhancement. 

 
THEORY 
  
Convolutional Neural Networks 

 
Convolutional neural networks are feedforward neural networks with 

local connections, weight sharing and other characteristics. A typical 
convolutional neural network is generally composed (Gal and Ghahramani, 
2015) of a convolutional layer, a convergence layer and a fully connected 
layer. The function of the convolution layer is to extract local features, and 
the function of the convergence layer is to reduce the size of the output 
feature map of the convolution layer, so as to reduce the number of 
parameters and calculation amount of the model, and improve the 
robustness and generalization ability of the model. The nodes of the fully 
connected layer integrate the features extracted from the previous layer and 
map them to the sample label space by connecting with all the nodes of the 
previous layer. The core operation is the convolution operation, which 
extracts the high-level features in the input data by sliding the convolution 
kernel on the input data to realize the abstraction and classification of the 
data. After the convolution operation, the bias term is usually added, and 
the nonlinear transformation is carried out by the activation function to 
further improve the expressivity of the model. The convolution operation 
can be expressed as the dot product operation (Gal and Ghahramani, 2015) 
of the input matrix and the convolution kernel: 

  

 
K L

i,j k,l i+k-1,j+l-1
k=1 l=1

Y W X=∑∑ g                                                  (1) 

 
where Y is the output matrix and i and j represent the row index and column 
index of the output matrix, respectively. k and l are the row index and 
column index of the convolution kernel W, where W represents the weight 
of the convolution kernel at the corresponding position. X is the input 
matrix, and i+k-1 and j+l-1 represent the position of the center of the 
current convolution kernel W on the input matrix X. Also, in order for the 
convolution kernel to slide over the input matrix, the height and width of 
the convolution kernel will usually be smaller than the size of the input 
matrix. 
 
 
Bayes' Fundamental Theorem 

 

( ) ( ) ( )
H H

P(D | H)P(H) P(D | H)P(H) P(D | H)P(H | D)
P(D) P D | H P H dH P D | H dHʹ ʹ ʹ ʹ ʹ

= = =
∫ ∫

  (2) 
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 The core idea of Bayes' fundamental theorem is to calculate the 

unknown probability according to the known probability, that is, to 
introduce new information to dynamically update the prior probability on 
the basis of the original prior probability, so as to approach the actual 
probability of the event step by step. Bayes theory emphasizes that the data 
distribution affecting the result is not only related to the collected data, but 
also related to the prior probability, which affects the estimated result 
distribution by affecting the posterior probability. Interpreting a neural 
network model with Bayes' fundamental theorem can be expressed as 
(Shridhar et al., 2019): 

 

( )
( ) ( ) ( )y x

y x
y xθ

|
|

|

p D D ,θ p(θ)
p(θ | D) p D D ,θ p(θ)

p D D ,θ p θ dθʹ ʹ ʹ
= ∝
∫

                (3) 

 
where θ  represents the training parameters of the neural network, D  
represents the training data, xD  represents the feature data, yD  represents 
the label data. A general neural network can be seen as a special case of a 
Bayesian neural network, where each weight is represented as a point 
estimated using maximum likelihood when the prior probability is constant. 
 
 
Bayesian backpropagation algorithm 
 
 The basic idea of Bayesian backpropagation algorithms is to 
approximate the true posterior probability by variational inference 
(Cornfield, 1967). Since the posterior distribution of weights p(w | D)  is 
difficult to calculate, a parameterized distribution, the variational 
distribution θq (w | D) is used to approximate p(w | D). In order to make the 
approximate distribution as close as possible to the real posterior 
distribution, the concept of KL divergence is introduced to measure the 
distance between the two distributions, and the KL divergence (Shridhar et 
al., 2019) is minimized by selecting the optimal parameter θ : 
 

[ ]opt 
θ θθ arg min KL q (w | D) p(w | D)= P                                          (4) 

 
Formula (4) combined with Bayes' theorem can be expanded as: 
 

[ ]θ

θ
θ

θ
θ

KL q (w | D) p(w | D)
q (w | D)p(D)q (w | D)log dθ
p(w | D)

q (w | D)logp(D) q (w | D)log dθ
p(w | D)

=

−=

∫

∫

P

                                   (5) 

Since KL is the distance between the two distributions, KL ≥ 0, can be 
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 obtained from formula (5) θ

θ
q (w | D)logp(D) q (w | D)log dθ
p(w | D)

≥ ∫ , where log p(D)  is 

the data likelihood recorded as evidence, then θ
θ

q (w | D)q (w | D) log dθ
p(w | D)∫  is the 

evidence lower bound ELBO. the assumption remains log p(D)  unchanged, 
minimizing KL divergence is converted to maximizing ELBO: 

 

[ ]
θ

θ
θ

θ θ
θ

q (w|D) θ θ

p(w | D)ELBO = q (w | D)log dθ
q (w | D)

p(w)           = q (w | D)logp(D | w)dθ+ q (w | D)log dθ
q (w | D)

           = E logp(D | w)-KL q (w | D)P (w)

∫

∫ ∫            (6) 

 
 In eq. (6),

θq (w|D)
E is the expectation of the parameter θ and 

θq (w|D)
E logp(D | w)  is the maximum likelihood of the data. Maximizing ELBO 
means finding the difference between maximizing the maximum likelihood 
of the data and minimizing the KL divergence. Since KL is difficult to 
calculate precisely, it is estimated using Monte Carlo MC sampling,  MC 
sampling from Gaussian distribution ( )(i)

θq w D∣  which is based a parameter 
θ : 

( ) ( ) ( )(i) (i) (i)
θ

1
F(D,θ) logp D | w logq w D logp w

n

i=
= − + −∑ ∣             (7)       

 In formula (7), n is the sampling times and (i)w  is the weights 
extracted at the i-th data point. The sampled weights are used for the 
forward propagation of the network to obtain the likelihood loss at the 
output layer, and the distance (i)w  from the prior is calculated at the same 
time. Finally, the gradient is estimated by the backpropagation algorithm 
based on reparameterization. 
 

Based on the Bayesian backpropagation algorithm, BCNN considers 
the feature graph as a random variable in the convolutional layer and 
operates with two convolutional check data to obtain two output feature 
graphs, which serve as the mean and variance of the Gaussian distribution 
respectively, and then samples the two feature graphs to obtain the 
activation value jb  of this layer as the input of the next layer, as shown in 
Formula (8) (Shridhar et al.,, 2019): 

 

( )2 2
j i i i ib A *µ A * α µj i= + e eÚ                                        (8) 
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where iA is the receptive field, ∗ indicates the coiling operation, i iA *µ  is 
the mean obtained from the first convolution operation, is the standard 
deviation obtained from the second ( )2 2

i iA * α µi e convolution operation. 
After the mean and standard deviation are obtained, the standard normal 
sample jÚ is multiplied by the standard deviation, and the mean is added to 
obtain the sampled activation value jb . 
 
 
Bayesian convolutional neural network 
 
 The BCNN method proposed in this paper fully considers the features 
of the original seismic data collected in low resolution space, abandons the 
previous convolution operation in high resolution space, and focuses more 
on extracting seismic data features in low resolution space. The BCNN 
structure constructed in this paper is shown in Fig. 1. The first part of the 
topology is the combination of convolution layer and activation layer. In the 
first layer, the convolution kernel size is 5×5, the step size is 1, and the zero 
filling is 2. 64 feature maps are obtained after operation. To extract the 
nonlinear features of the model, the second layer of convolution kernel size 
is 3×3, step size is 1, zero fill is 1, input channel is 64, output feature 
channel is 32, and Tanh activation function is connected. The third layer 
convolution kernel has the size of 3×3, the step size is 1, the zero fill is 1, 
the number of input channels is 32 and the number of output channels is 3, 
connecting the Tanh activation layer. The second part is the form of the 
upper sampling layer combined with the activation function. The activation 
function is Sigmoid (as shown in Fig. 2), in which the upper sampling layer 
uses subpixel convolution, the up-sampling rate is 3, and the low-resolution 
spatial feature mapping is aggregated, which is an efficient, fast and 
parameter-free up-sampling method of pixel rearrangement. The way of 
pixel rearrangement can be expressed as (Shi et al., 2016): 
 

   x,y,c x/r , y/r ,c r mod(y,r) c mod(x,r)PS(T) T × × + ×=                  (9) 

 
where r represents the multiple of the up-sampled graph and c is the final 
number of channels. In the case of multiple channels, the feature map 
rearranges the contiguous c channels as a whole to obtain the multichannel 
up-sampled graph. The subpixel convolution operation at the end of the 
network model fully preserves more texture features of the seismic image in 
the low-resolution space, which is conducive to the further establishment of 
high-resolution seismic images. 
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Fig. 1. Schematic diagram of BCNN.  
 
 
In the traditional sense, neural networks generally need to be trained 

under artificial fine regulation, and rely on weight control measures such 
as weight regularization and similar techniques to avoid the impact of 
overfitting problems. In this paper, we innovatively use a Bayesian 
convolutional neural network based on variational inference to solve the 
overfitting problem. BCNN carries out network optimization through 
random sampling weight distribution. Since the weights obtained from 
each collection are different, it is equivalent to fusing multiple network 
models with different parameter combinations of good performance to 
achieve the effect of model average, so that BCNN can learn more 
abundant representation and prediction. 

 
 
Fig. 2. Activation functions used in the network. 
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DATASET CREATION AND NETWORK TRAINING 
Dataset creation 
 

The data set used in this article is based on the F3 seismic data set 
published by SEG. The F3 works in the northern part of the Netherlands 
are well defined and are now well recognized in geology and geophysics. 
The data set is 122.9 km², with 951 Inline lines and 651 Crosslines, each 
with 634 sampling points at a sampling rate of 4 ms. 

  
The training data set consists of both pure wave data and enhanced 

data used as labels. The enhanced data for the label does not really exist. 
In this paper, the seismic data after manual filtering is selected as the label 
data to ensure the authenticity of the training data. In order to make the 
network learn rich data features and give full play to the performance of 
the network, the data set is made by selecting seismic data containing 
special geological structures. The specific operation is as follows: Slice 
the F3 seismic data Inline profile with a sliding window of 85×85, and 
randomly add Gaussian noise with variance ranging from 0.01 to 0.18 on 
the basis of manual filtering data to conduct deep damage to geological 
structures, so as to simulate the pure wave data suitable for training the 
network. On the basis of the slicing data, the data scale is adjusted to 
255×255 as the label data. The training set, verification set and test set are 
divided into approximately 8:1:1 ratio. Finally, 1995 sets of 85×85 pure 
wave data, 255×255 labeled data are used as the training set, 230 sets of 
85×85 pure wave data, 255×255 labeled data are used as the verification 
set, 230 sets of 85×85 pure wave data, 255×255 labeled data as the test set. 
Part of the training data is shown in Fig. 3 for speeding up network 
training, using GPU for training. The graphics card model is NVIDIA 
Quadro RTX 4000Ti with 8 GB of separate video memory. The deep 
learning framework uses PyTorch. This configuration provides enough 
computing power and memory capacity to efficiently train neural network 
models. 

 
Fig. 3. Part of the training data sample. 
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 Network training and optimization 

 
A total of 200 rounds of network training were conducted with a 

batch size of 32. The loss function was selected as MSE and the Adam 
optimization algorithm was used to minimize the loss function. When 
loading the data, the data of each batch was randomly arranged to 
introduce rich sample variations for training, helping the optimization 
algorithm to better explore the parameter space. In addition, during the 
network training process, set the initial learning rate to 0.01, use 
MultiStepLR, an easy-to-adjust learning rate adjustment strategy, set 
parameter Gamma to 0.1, and adjust the learning rate at Epoch 30 and 80, 
respectively, to improve the convergence speed and prediction accuracy of 
the model. The results of network training are shown in Fig. 4 (the 
network starts training to the convergence process). 

 

 
                             (a) 

 

                                                                                        
                           (b) 

 
Fig. 4. Network training results.  (a) Loss function of network training; (b) PSNR 
change curve during training. 
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 Fig. 4(a) shows the loss function of training set and verification set 

during training. The loss function of the network on the training set and 
the verification set shows the same trend, and with the increase of the 
network training times, the loss on the verification set is lower than that on 
the test set. Fig. 4(b) shows the PSNR change curve of training data and 
verification data in the training process. PSNR is the peak signal-to-noise 
ratio, whose expression is 

  
2MAXPSNR 10 lg

MSE
⎛ ⎞

= × ⎜ ⎟
⎝ ⎠

          ,                                                               (10) 

 
where MAX is the maximum possible value of the signal (e.g., 255 for an 
8-bit grayscale image) and MSE is the mean square error, which 
represents the average of the square of the difference between each pixel 
of the original image and the enhanced image.  
 

2[ (I(i,j)-K(i,j)) ]
MSE=

M*N
∑ ∑

           ,                                         (11) 

 
where M and N represent the width and height of the image respectively, 
I(i, j) represents the pixel value of the original image at the pixel position 
(i, j), and K(i, j) represents the pixel value of the processed image at the 
pixel position (i, j). The first summation means summing all the rows of 
the image, and the second summing means summing all the pixels of each 
row. When the model loss tends to be stable, using PSNR to quantify the 
performance results of the network on the training set and verification set, 
it can be found that the PSNR of the final result of the training set is stable 
below 27 dB, while the PSNR of the final result of the verification set is 
obviously slightly higher than the training set, stable around 28 dB. The 
results show that the neural network with Bayes fusion has strong 
generalization ability and is not easy to overfit. 
 
 
COMPARATIVE ANALYSIS OF ENHANCED RESULTS 
 

In order to further demonstrate the enhancement effect of the network 
applied in this paper on seismic data, the residual section, amplitude 
spectrum and spectrogram before and after the enhancement are analyzed 
by selecting seismic data containing two special geological structures, 
fault and uplift respectively. 

 
 

Fault structure enhancement 
 

Select the original seismic section at Inline 104, where the fault 
structure is obvious, but the details are blurred due to noise interference. 
Fig. 5(a) is the original seismic section, and Fig. 5(b) is the enhanced 
seismic section after the method in this paper. Compared with the pre-
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 enhanced seismic section, the noise is significantly suppressed, the in-

phase axis is more continuous and clear, the difference between layers is 
significant, and the fault structure is more prominent. Fig. 5(c) shows the 
seismic section after FCNN enhancement. Compared with the original 
section, the noise removal is obvious, but compared with the method in 
this paper, a small amount of noise remains and the detail enhancement of 
the in-phase axis is poor. The construction-oriented filtering is based on 
anisotropic diffusion smoothing algorithm, which only smooths the 
information parallel to the seismic in-phase axis, but does not smooth the 
information perpendicular to the seismic in-phase axis. Fig. 5(d) shows the 
enhancement result of the construction-oriented filtering. The in-phase 
axis processed by the algorithm is more continuous, and the fault structure 
is also effectively enhanced. However, because the information 
perpendicular to the in-phase axis is not processed, the smoothness of the 
formation edge is low, and the overall visual resolution is significantly 
lower than that of the proposed method. 

 

 
(a)                                                                 (b)     

 

 
(c)                                                                   (d)        

 
 
Fig. 5. Comparison of fault enhancement effects of different methods.  (a) Original fault 
seismic data; (b) BCNN enhancement results; (c) FCNN enhanced results; (d) Construct 
guided filter enhancement results. 
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  Fig. 6 shows the residual profiles corresponding to the three methods. 

Near the 250th channel, the residual plots of the three methods all contain a 
small amount of relatively clear in-phase axis information, indicating that 
some effective signals are over-enhanced. In the residual section 
corresponding to FCNN, the in-phase axis information is particularly 
obvious, and even distortion occurs at the break point. Compared with the 
other two methods, the method presented in this paper can enhance the 
fault structure and avoid distortion better. Fig. 6(d) shows the average 
amplitude spectrum of fault seismic data before and after enhancement by 
the three methods, in which the effective signals are mainly concentrated 
within 40 Hz. Due to its special geological structure, the amplitude at low 
frequency is larger. Compared with the three methods, the overall 
frequency of seismic data enhanced by structure-oriented filtering is lower 
than that of the original data. The high-frequency part of the seismic data 
enhanced by FCNN is slightly higher than that of the original data, and the 
enhanced amplitude spectrum of the proposed method is more consistent 
with the amplitude distribution of the original data, indicating that the 
proposed method has good amplitude preservation.  
  

 
(a)                                                                        (b) 

    

 

(c)                                                                           (d) 
 

Fig. 6. Residual sections and amplitude spectra of different fault methods: (a) BCNN 
fault residual profile; (b) FCNN fault residual profile; (c) Construct guided filter fault 
residual profile; (d) Amplitude spectrum before and after fault tectonic reinforcement. 
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  The f-k spectra corresponding to the original data and different 

methods are shown in Fig. 7, where the brighter the color indicates the 
stronger the signal energy of the corresponding frequency. The original 
acquired data contains a large amount of incoherent noise, and the energy 
of the f-k spectrum presents a dispersed state. Compared with the original 
data, the corresponding f-k spectrum energy after processing by the three 
methods is convergent. In general, the f-k spectrum energy of the method 
proposed in this paper is more concentrated, indicating that BCNN has 
more advantages in enhancing the details of fault structure. The enhanced 
PSNR of the three methods was recorded, and the values of the proposed 
method, FCNN and construction-oriented filter were 29.93 dB, 28.41 dB 
and 29.30 dB, respectively. 

 
 
 

 

    (a)                                                                  (b) 
 

 
 

(c)                              (d) 
 

Fig. 7. f-k spectra of different methods. (a) f-k spectrum of original fault seismic data; 
(b) f-k spectrum of seismic data enhanced by BCNN; (c) f-k spectrum of seismic 
dataenhanced by FCNN; (d) Construct f-k spectrum of seismic data enhanced by 
guided filter. 
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 Fault uplift structural enhancement 

 
Select the local section of the original fault rise at Inline 420. The 

fault rise structure is complex, the in-phase axis is dense, and some of the 
in-phase axis is difficult to trace. Fig. 8(a) shows the local section of the 
original fault rise structure, and Fig. 8(b) shows the enhanced effect of the 
method in this paper. In contrast, the noise of the enhanced seismic data 
has been effectively removed. Moreover, near the 130th channel, the 
continuity of the inclined in-phase axis is significantly improved. Fig. 8(c) 
shows the enhancement effect of FCNN, and the noise is suppressed to a 
certain extent. Compared with the method in this paper, the enhancement 
effect of the tilt in-phase axis continuity needs to be improved. Fig. 8(d) 
shows the enhancement effect of constructing oriented filtering. This 
method removes a large amount of noise and has a remarkable 
enhancement effect in the direction parallel to the in-phase axis. However, 
because it does not smooth the transverse discontinuous in-phase axis, it is 
slightly inferior in the processing of details compared with BCNN. 

 
 

 
(a)                                                               (b) 

 

(c)                                                             (d)   
 

 
Fig. 8. Comparison of local enhancement results of fault uplift structures by different 
methods. (a) Original local uplift seismic data; (b) BCNN enhancement results; 
(c) FCNN enhanced results; (d) Construct guided filter enhancement results. 
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 Fig. 9 shows the residual profiles corresponding to different methods. 

There are no effective signals observed in the residual plots of the 
proposed method and the construction-oriented filter, but there are subtle 
effective signals in the residual plots of FCNN, which indicates that the 
protection of effective signals by FCNN method is poor. Fig. 9(d) shows 
the average amplitude spectrum of the section where the fault rise 
structure is located after enhancement by different methods. The 
amplitude of the seismic data enhanced by the proposed method is more 
consistent with the original data than that of the construction-oriented 
filtering and FCNN, indicating that BCNN also has better amplitude 
preservation in the enhanced fault rise structure. The f-k spectra enhanced 
by the original data and different methods are shown in Fig. 10. It can be 
seen that the energy of the f-k spectra of the proposed method is more 
concentrated. The PSNR of BCNN, FCNN and construction-oriented 
filtering are 29.70 dB, 28.67 dB and 29.40 dB, respectively. The proposed 
method has the highest PSNR, which is superior to FCNN and structure-
oriented filtering. 

 

 

(a)                                                                (b)  

 
                                  (c)                                                                      (d) 

Fig. 9 Residual profiles of fault uplift structures by different methods. (a) BCNN fault 
rise residual profile; (b) FCNN back rise residual profile; (c) Construct a guided filter 
rise residual profile; (d) Amplitude spectrum before and after fault uplift enhancement. 
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 CONCLUSION 

 
 As a kind of Bayesian modeling network based on variational inference 
for weights, BCNN has achieved good results in many fields such as image 
recognition and image super resolution. The author applies BCNN to 
seismic data enhancement. Compared with FCNN and construction-
oriented filtering algorithm, the proposed algorithm can effectively remove 
random noise, protect and highlight geological structure details, improve 
the visual resolution of seismic data on the whole, and have more 
advantages in the retention of effective detail information. This is due to 
the fact that the random sampling operation of the weight distribution in the 
training process enables BCNN to have a deeper data representation ability 
and the up-sampling operation at the end of the network protects the 
training data in the low resolution spatial feature information. In addition, 
compared with FCNN trained with the same data set, the training results 
and test results of BCNN fully demonstrate that the network has stronger 
generalization ability and can effectively avoid overfitting problems. 
  

 

 
(a)                                                                 (b)       

 

(c)                                                              (d) 
 

Fig. 10 f-k spectra of different methods. (a) f-k spectrum of original local fault rise 
seismic data; (b) f-k spectrum of seismic data enhanced by BCNN; (c) f-k spectrum of 
seismic data enhanced by FCNN; (d) Construct f-k spectrum of seismic data enhanced 
by guided filtering. 
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  Although BCNN has achieved a good effect on seismic data 

enhancement, the whole network training process lacks the combination 
with the seismic data itself. In the follow-up work, the internal relationship 
of seismic data should be fully explored, and high-quality training data 
should be created to further improve the enhancement effect of the network 
for special geological structures. 
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