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ABSTRACT

Zhang, Y., Liu, X.Q., Song, L.W. and Dong, H.L., 2023.  Microseismic event detection 
based  on  multiscale  detection  convolutional  neural  network.  Journal  of  Seismic 
Exploration, 32: 455-477.

The  traditional  microseismic  event  detection  method  is  mainly  based  on  the 
characteristic calculation of microseismic signals. Its accuracy is greatly affected by the 
empirical  parameter  setting  of  the  algorithm,  characteristics  selection  of  signal,  and 
signal-to-noise  ratio  of  microseismic  signals.  Furthermore,  it  also  takes  a  long 
computation time when dealing with massive microseismic data. Therefore, this paper 
presents  a  method  of  microseismic  event  detection  based  on  the  multiscale  neural 
network.  Firstly,  according  to  the  characteristics  of  microseismic  signals,  one-
dimensional convolutional neural network is built to extract the fine-grained features of 
the shallow layers and the semantic  features of the deep layers.  Then,  the credibility 
factor  model  is  established  for  the  detection  results  of  the  different  scale  feature 
expressions,  and  the  final  recognition  results  are  obtained  by  uncertainty  reasoning. 
Compared with wavelet analysis, BP neural network, and traditional convolution neural 
network,  the  experimental  results  show that  the  proposed model  is  superior  to  other 
methods, and has better anti-noise and generalization ability. In addition, this method also 
provides a new strategy for processing other monitoring signals with large interference.
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INTRODUCTION

        Microseismic  monitoring  technology  is  a  method  to  reveal  the 
geometry  and  spatial  distribution  of  underground  hydraulic  fractures, 
evaluate reservoir reconstruction measures, and optimize post-treatment, by 
identifying and locating  the  microseismic  caused by rock fracture  in  the 
process  of  hydraulic  fracturing.  As  indispensable  processing  means  for 
microseismic  monitoring,  microseismic  event  identification  is  of  great 
significance for focal  position monitoring, focal  mechanism analysis,  and 
fracture interpretation. In recent years, microseismic monitoring technology 
has been widely used in oil and gas field exploration and development, coal 
mine  safety,  rock  fracture  monitoring,  and  other  fields.  For  example, 
dynamic detection of oil and gas reservoir (Li et al., 2016), monitoring of 
hydraulic  fracturing in  oil  field (Ge et  al.,  2005),  front  tracking of  fluid 
driving in oil field industrial production (Maxwell et al, , 2010), water inrush 
from mine, landslide, tunnel safety monitoring (Sun et al., 2012), etc.

As an important basis of microseismic data processing, microseismic 
event  detection  plays  a  very  significant  role  in  subsequent  microseismic 
source location (Xie, 2015). At present, the detection of microseismic events 
mainly  refers  to  the  traditional  seismic  detection  methods,  including 
STA/LTA (Yi, 1988), Akaike information criterion (AIC) (Sleeman and van 
Eck, 1999), and wavelet analysis (Holschneider, 2008), etc. Many scholars 
have  proposed  many  improvement  methods  on  this  basis.  Zhang  (2003) 
developed  an  automatic  P-wave  arrival  detection  and  picking  algorithm 
based on the wavelet transform and AIC picker. In each time window, they 
evaluated  the  consistency  of  threshold  absolute  wavelet  coefficients  at 
different scales by using AIC automatic classifier, to determine whether P-
wave  arrival  is  detected.  Shi-Cha  et  al.  (2013) used  LTA/STA method, 
combined  with  polarization  analysis,  and designed the  polar-energy  ratio 
method to detect microseismic events based on the characteristics of multi-
channel signals and noise. Sheng (2019) used wavelet transform to separate 
the  effective  signal  from  the  noise,  and  then  carried  on  the  high-order 
statistics to the effective signal. The first arrival time picking precision of 
low signal-to-noise ratio (SNR) data is effectively improved  by analyzing 
the  abnormal  points  of  signals  with  characteristic  curves. Effectively 
improve the first arrival time pick-up accuracy of low SNR data. Traditional 
algorithms have limited recognition accuracy and are sensitive to noise. To 
improve the efficiency and accuracy of data processing, it is necessary to 
study  algorithms  suitable  for  the  automatic  identification  of  effective 
microseismic events with massive data.



                                                                                  

Deep learning  algorithms  are  particularly  appropriate  for  processing 
large amounts of data and can extract feature maps layer by layer to achieve 
automatic  recognition.  Velis et  al.  (2015) used  pattern  recognition 
technology  to  detect  waveform  from  microseismic  data  and  used  rank 
reduction filtering methods to improve the SNR. First, pattern recognition is 
used  to  seek  plausible  hyperbolic  phase  arrivals,  and  then  the  identified 
event  is  denoised   and   reconstructed,   which  improves  the  reliability  of 
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single-wave  arrival  detection.  Shang (2017) established  discrimination 
between  microseismic  events  and  blasting  based  on  different  source 
parameters,  using  principal  component  analysis  and  the  artificial  neural 
network.  While  these  source  parameter-based  methods  have  achieved 
excellent  performance  in  microseismic  events,  these  techniques  always 
require post-processing by experienced analysts.  Xu et al. (2021) proposes 
the INN model that combined the genetic algorithm and neural network, it 
used  to  identify  rock  blasting  vibration  waveform  in  metal  mines.  Six 
features are selected as the input of the waveform classification model, and 
the genetic algorithm is used to optimize the number of nodes in the hidden 
layer. The trained model can effectively identify microseismic waveform. 
Such practices often lead to incomplete identification results because of the 
neglect  of  low-scale  signal  features.  The  above-mentioned  deep  learning 
methods have  certain  effects,  but  there  are  still  some problems:  (1)  The 
difficulty of data acquisition and the small number of effective signals in 
microseismic monitoring lead to the limitation of multi-trace property design 
algorithms. (2) When using deep learning for microseismic event detection, 
it  often  enhances  the  extraction  of  semantic  features  by  deepening  the 
network layers because microseismic event energy is weak. Such practices 
often lead to incomplete detection results because they ignore the features of 
low-scale.

Multiscale feature analysis was first proposed in the field of image 
processing, and commonly used methods to construct multiscale features are 
as follows: (1) Building image pyramids based on image resolution (Singh, 
2018); (2) Based on different levels of feature maps within neural networks 
feature  pyramid (Cai,  2016;  Liu.,  2016);  (3)  Space  pyramid  based  on 
different  receptive fields (Zhao, 2017).  The fusion methods of  multiscale 
feature  maps  include  (1)  Early  fusion:  First  fusion  of  multiscale  feature 
maps, and train predictors on the fused feature maps. For example, VGGNet 
(Zhang,  2017),  R-FCN (Dai,  2016),  ParseNet (Liu,  2015),  etc.  (2)  Late 
fusion: Improve recognition performance by combining detection results of 
different  scales.  For  example,  SSD (Liu,  2016),  YOLO2 (Redmon  and 
Farhadi,  2017) YOLO9000: better,  faster,  stronger, YOLO3 (Redmon  and 
Farhadi, 2018), etc. The features of microseismic signals at different scales 



                                                                                  

have  different  meanings,  synthetic  multiscale  features  for  detection  will 
improve the accuracy of the results.

Given  the  above  analysis,  we  propose  a  multi-scale  detection 
convolutional neural network (MSD-CNN) for microseismic event detection 
technology, builds a convolutional neural network to extract microseismic 
data characteristics to identify and introduces the Certainty Factor  model 
(Certainty-Factor, C-F) into the neural network; the fine-grained information 
and semantic information of the microseismic signal obtained by the scale 
feature  map is  used  for  credibility  modeling;  the  final  result  is  obtained 
through the uncertainty algorithm of the detection results on multiple scales, 
and  the  constructed  model  is  more  suitable  for  the  processing  of 
microseismic data,  accurately identify  diverse  microseismic data without 
deepening the network. In the process of model processing, the sliding 
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window size and step size are used to segment the data to form the sample 
input model,  and the convolutional  neural  network is  used to  extract  the 
features of different scales of microseismic events, learn the credibility of 
each scale and the dynamic strength of knowledge, and avoid manual design. 
The dynamic strength on each scale is obtained by the detector on that scale, 
and the detection result is integrated with the uncertainty of the trust degree 
through  the  credibility  model,  and  the  recognition  result  obtained  has  a 
higher degree of confidence. Experimental results prove that the proposed 
method  has  higher  efficiency  and  can  better  automatically  identify 
microseismic signals.

Compared to what has been done in microseismic detection in the past, 
in  this  study:  (1)  Dividing  samples  through  a  sliding  window  not  only 
increases the diversity  of samples but  also avoids the damage caused by 
microseismic events due to data segmentation. (2) The MSD-CNN we built 
pays attention to the multiscale features of microseismic signals. (3) In the 
multiscale  detection,  combined  with  the  C-F  model  in  the  uncertainty 
reasoning theory, the uncertainty of the neural network is noticed

THEORY

Multiscale features

The detector is usually connected to the last layer of the convolutional 
neural  network  (CNN)  for  prediction  in  the  traditional  microseismic 
recognition  network  structure.  Deep  feature  maps  cannot  provide  fine-
grained  information. Therefore, multiscale features expression is sought as 
an effective way to solve fine-grained loss. The feature maps with different 
depths  within  the  CNN  form multiscale  expressions  of  the  feature  map 
because of the layered structure of the network, and the deeper the feature 
map, the larger the receptive field. SSD algorithm and MS-CNN algorithm 
proposed the idea of directly detecting targets on feature maps of different 



                                                                                  

scales, and finally integrating them. The shallow feature map is responsible 
for detecting and recognizing detailed targets, and the deep feature map is 
responsible for detecting subject targets.

Since  the  surrounding  environment  of  fracturing  operations  has  a 
great influence on the waveform characteristics of microseismic events, it is 
not comprehensive to perform feature detection of microseismic waveform 
on only one scale. Observations and judgments on multiple scales should be 
integrated. As shown in Fig. 1a, the traditional network makes predictions in 
the last layer after obtaining high-scale feature maps. As shown in Fig. 1b, 
the  multiscale  detection  network  can  not  only  obtain  feature  maps  of 
different scales but also predict results from feature maps of different scales. 
When the feature maps of different scales are assigned weights for weighted 
fusion processing, the overall loss function E we define:
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where l is a number of different scales; 
lω is the weighting factor of the scale 

l; El(αl) is the loss of scale l; αl is the feature map of scale l. The scale loss is 
affected  by the  scale  feature  map,  which is  related  to  the  corresponding 
convolution  kernel  and  bias.  Using  the  expression  weighting  method, 
formula (1) can be rewritten as:
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where  Kl is the convolution kernel of the scale  l;  bl is the bias term of the 
scale l.

Predict Result

  

Multiscale 
synthesis

Predict Result

Predict

Predict

Predict

Predict

(a) The traditional method                   (b) The multiscale detection method

Fig. 1. Method of prediction.

Certainty-Factor model



                                                                                  

Neural networks usually judge the prediction results by thresholding 
the confidence, and the confidence score is output during classification. This 
style of discriminant methods is often not conducive to the uncertainty of 
knowledge  expressed  on  the  network.  The  C-F  model  is  an  effective 
uncertainty reasoning method. It combines the confidence scores of various 
scales and obtained the fusion results through uncertainty inference, which 
has  the  advantages  of  intuitive,  simplicity,  and  good  effect.  The  neural 
network combined with the C-F model takes the detection results of each 
scale  as  evidence  and  the  final  recognition  result  as  the  conclusion.  The 
relationship between the detection result of each scale and the final result is 
knowledge. The uncertainty of knowledge can be expressed as a production 
rule:
                                           

    ( ( , )),  1, 2,3 .i iif E then H CF H E i n= 
                                      (3)
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where  CF(H,Ei) is the credibility factor (static strength) that indicates the 
strength  of  knowledge,  that  is,  the  degree  of  influence  on  H  when  the 
evidence corresponding to Ei is true. The meaning of the above production 
formula is: when a microseismic event is detected at scale i, the credibility 
of a microseismic event is  CF(H,Ei). The appearance of relevant evidence 
increases the credibility of the conclusion that  H is true, then  CF(H,Ei)>0, 
which means that the emergence of evidence supports the fact that H is true 
and will increase the value of CF(H,Ei); otherwise,  CF(H,Ei)<0 means that 
the  appearance  of  evidence  supports  that H is  false,  and  the  value  of 
CF(H,Ei) will become smaller;  CF(H,Ei) = 0 means that the appearance of 
evidence  has  nothing  to  do  with  the  conclusion.  The  static  strength  is 
obtained by the prior probability P H（） and the posterior probability P(H|Ei), 
but  in  practical  applications,  the  prior  probability  and  the  posterior 
probability are difficult to obtain. In general, the static strength is directly 
given by the expert. The principle is that the more corresponding evidence 
appears to support  H as true, the larger  CF(H,Ei) should be; otherwise, the 
smaller.

The model transfers the uncertainty of knowledge and evidence to the 
conclusion through step-by-step reasoning. Conclusion The credibility of H 
from the  evidence  inference  corresponding to  Ei is  expressed as  CFi(H), 
which is calculated by the following formula:

( ) ( , ) {0, ( )}i i iCF H CF H E MAX CF E= ×       ,                                      (4)

where  CFi  (H) is the dynamic strength. it represents the current degree of 
uncertainty of the evidence Ei.

The credibility of the microseismic event detected on each scale is 
calculated respectively,  and then the credibility of the final  conclusion is 



                                                                                  

synthesized by the uncertainty algorithm of the conclusion. The credibility 
of the final conclusion combines the uncertainty of knowledge on multiple 
scales.CFi,j  (H) is used to represent the credibility formed by the combined 
effects  of  Ei and  Ej.  Uncertainty  algorithm of  conclusions  is  defined  as 
follows:

when CFi(H)<0, CFj(H)<0:
, ( ) ( ) ( ) ( ) ( )i j i i i jCF H CF H CF H CF H CF H= + +                   (5)

when CFi(H)≥0, CFj(H)≥0:

, ( ) ( ) ( ) ( ) ( )i j i j i jCF H CF H CF H CF H CF H= + −                  (6)
when CFi(H) and CFj(H) have different signs 

,

( ) ( )
( )

1-min{| ( ) |,| ( ) |}

              

i j

i j

i j

CF H CF H
CF H

CF H CF H

+
=

       .                        (7)
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CONSTRUCTION OF MULTISCALE DETECTION NEURAL 
NETWORK

Model working principle

Forward propagation of multiscale detection network

During the  convolution  operation,  the  feature  map  of  the  previous 
layer  is  convolved  through  a  learnable  convolution  kernel,  and  then  the 
output feature map of this layer can be obtained through the normalization 
function  and  the  activation  function.  The  output  of  the  normalization 
operation is defined as follows:

      

1 1
1

1

( )
= ( )

var( )

l l
l l

l

E
BN

ε

− −
−

−

−=
+

a a
αa

a
      ,                                     (8)

where 1l −a  is the output of layer 1l − , which is the input of layer l ; 1( )lE −a  is 
the  mean  of  input;  1var( )l −a  is  the  variance  of  the  input;  ε  is  a  random 
minimal positive value to avoid the special case where the denominator is 
zero;  ( )BN •  is  batch normalization function,  Therefore,  the output of  the 
convolution operation after normalization is defined as follows:

1( ( * ))l l l lBN σ −= +ααK b           ,                                       (9)

where ( )σ •  is the nonlinear activation function; There are many definitions 
of ( )σ • , generally softmax  function, sigmoid  function or tanh  function.



                                                                                  

Generation of down-sampling pooling layer of input feature map. The 
number of feature maps remains unchanged, and the size becomes smaller 
after  down sampling.  The  output  of  the  pooling  operation  is  defined  as 
follows:

1( )l lpool −=αα          ,                                                      (10)

where ( )pool • is the down sampling function, generally, the down sampling 
function has methods such as taking the average value, maximum value of 
the data  in  the  sampling window. The error  of  feature extraction  mainly 
comes  from  two  aspects:  (1)  Due  to  the  limitation  of  the  size  of  the 
neighborhood, the estimated variance increases; (2) The parameter error of 
the  convolutional  layer  will  also  cause  the  mean  shift.  Average  pooling 
emphasizes  the  sampling  of  the  overall  feature  information,  which  can 
reduce the first error; the maximum pooling selects better classified features 
and retains more  texture  information,  which can reduce the second error 
(Boureau,  2010).  In  this  paper,  to  better  extract  attributes  for  accurate 
identification, we choose maximum pooling.

For  the  fully  connected  layer,  the  operation  output  of  the  fully 
connected layer is defined as:
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1( ) ( ) l l l l lσ σ −= = +a z a K b       .                                        (11)

Considering the layered structure of the convolutional neural network, the 
deeper the feature map, the larger the receptive field, so the feature maps of 
different  depths in the network form a multiscale  expression.  The neural 
network learns the credibility of each scale and the static strength  of the 
detection result. The dynamic strength 

ly  of scale l  is:

                      
1( )l L L Lsigmoid −= +y a K b                                                       (12) 

where ( )sigmoid •  is the activate function of detectors; LK is the convolution 
kernel of the final layer of detectors; Lb  is the bias of the final layer of the 
detectors.

The  C-F  model  is  equivalent  to  the  non-linear  weighting  of  the 
detection results of the feature map of each scale. Credibility is calculated 
as:

                     ( , )= max(0, )l l l l lH ω ω= ×u y y        ,                               (13)

where lu  is credibility of scale l ; ( )H • is credibility reasoning function; lω is 
static strength of scale l . The synthesis result of scale ,i j  is:
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                        (14)

Back propagation of multiscale detection network

 In  the  process  of  neural  network  training,  the  parameters  of  the 
convolution  kernel  are  adjusted  with  loss  as  the  objective  of  the 
optimization. The binary cross entropy (BCE) loss function is used in this 
paper, which is defined as follows:

* *

1

1
ln( ) (1 ) ln(1 )

C

i i i i
i

E y y y y
C =

= − + − −∑        ,                          (15)

where  C  is the number of samples;  *
iy  is a label of the sample  i ;  iy is a 

predicted value of the sample  i . The model parameters are updated by the 
gradient  descent  algorithm,  and the loss  information is  fed  back through 
back  propagation.  The  back  propagation  error  can  be  regarded  as  the 
sensitivity δ  of the basis of each neuron. Sensitivity δ  in the C-F model is 
defined as follows:
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The sensitivity Lδ of the final detector layer is defined as:

= '( )
l

L L
l L

E δ σ∂ ∂ =
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ey
δz

y z
      ,                                                (17)

where e is the Hadamard product.

According  to  the  sensitivity  of  layer  1l + ,  the  expression  of  the 
sensitivity of layer l  is:

    
1 1

1
1

=
l l

l l
l l l l

E Eδ δ
+ +

+
+

∂ ∂ ∂ ∂= =
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z z

z z z z
      .                                  (18)

When  the  backpropagation,  the  gradient  calculations  of  different 



                                                                                  

layers are different. If the layer  1l +  is fully-connected, the sensitivity of 
the layer l  is:

1 1=( ) '( )l l T l lδ δ σ+ + eK z                                                       (19)

If the layer 1l +  is a pooling layer, the sensitivity of the layer l  is:

1= ( ) '( )l l lupsampleδ δ σ+ e z       ,                                             (20)

where upsample  function completes the magnification and error distribution 
logic of the pooled error matrix.

If  the  layer  1l +  is  a  convolutional  layer,  it  passes  through 
convolution,  activation  function,  and  batch  normalization  layers  in  the 
forward propagation. Then the sensitivity of the layer l  is:

1 1

1 '

1 var( ) *

        180( ) ( )

l l l

l lrat

δ ε δ

σ

− +

+

= + ×a

K ze
（）

   ,                                     (21)

where  180( )rat •  means  rotating  the  loss  matrix  180  degrees.  Rotate  the 
feature map and calculate the cross-correlation matrix firstly, then inverts the 
output. In this way, convolution kernels used for convolution in forwarding 
propagation can be obtained.
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After determining the sensitivity of each layer, the gradient of the loss 

function to the convolution kernel K  and the bias b  is:

1
l

l l
l l l

E E δ −∂ ∂ ∂= =
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z
a

K z K
                            (22)

l
l

l l l

E E δ∂ ∂ ∂= =
∂ ∂ ∂

z

b z b
                                 (23)

When the learning rate is η , the parameters of each layer of a neural 
network are updated as follows:

1=l l l lη −−K K aδ                                     (24)

l l lη= − ∑b bδ     .                                 (25)

Network architecture 

Fig. 2 shows the MSD-CNN architecture that predicts the noise or 
microseismic events.  There are 6 detection scales in the model,  and each 



                                                                                  

detection scale is composed of convolution, activation function, and batch 
normalization. After each scale is connected to the corresponding detector 
that is composed of three pooling layers and three fully connected layers 
alternately. The result is input into the C-F model by the detector to make a 
decision. With the deepening of a convolutional neural network, the size of 
the convolution kernel is gradually reduced, and the fine-grain multiscale 
expression is improved. The three maximum pooled layers of the detector 
have a window of 2 × 1 and a step of 2, and the output of the fully connected 
layer is 1/2 of the input.

C-F
Model

Convolution layer

Relu layer

Batch normalization layer

Detector

0
1

0 ：noise event

Output
Predictions

1 ：microseismic event

Fig. 2. MSD-CNN architecture for microseismic events detection.
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4
The  multiscale  network  detection  we  propose  is  based  on  the 

independent recognition of multiscale feature maps, and the final detection 
results  of  samples  are  supervised  trained  through  labels.  The  detailed 
network data processing is shown in Fig. 3. The original data is preprocessed 
to  obtain  samples  and  labels.  The  preprocessed  samples  are  extracted 
through a multiscale network for multiscale feature maps. Then, multiscale 
feature maps are sent to detectors for detection, and the accuracy of each 
scale is calculated. The confidence level detected by each scale is used as the 
dynamic strength and the accuracy as the static strength into the credibility 
model. The final composite result is calculated with the label calculation loss 



                                                                                  

error and various evaluation indicators.

Raw Data

Preprocessing

Scale 1 

Scale 3

Scale 2 

Scale 4 

Scale 5

Scale 6

Detector 1

Multiscale 
Accuracy

C-F Model

Global Loss

Detector 2

Detector 3

Detector 4

Detector 5

Detector 6

Labels

Samples

  

Fig. 3. MSD-CNN data flow. 
 

          The network constructs a global loss function and obtains the accuracy 
of the detection results on the shallow fine-grained features and the deep 
semantic  features  through  verification  sets.  The  accuracy  is  defined  as 
follows:

ACC TP TN TP TN FP FN= + + + +（）（）       ,               (26)

where TP and FP represent true positives; false positives, respectively; FN 
represents false negatives; TN represents true negatives.

The static strength lω ( 1, 2,3 6.)l = ⋯  is set to 1 on each scale when the 
model is initialized, and is updated to the accuracy of the detection on this 
scale after each round of verification. The C-F model has 6 uncertain pieces 
of  knowledge:  if  the  detection  contains  micro-seismic  waveform 
at  scale  i ,  then the sample does contain microseismic waveforms at  that 
scale with the credibility of  lω ( 1, 2,3 6.)l = ⋯ .  In the credibility calculation 
process  of  the  conclusion  H ,  the  premise  condition  iE  is  to  detect  the 
dynamic intensity  of the microseismic waveform at  the scale  i ,  which is 
learned by the neural network detector. Finally, the conclusion uncertainty 
algorithm is used to combine two by two to finally obtain the credibility 
formed by the comprehensive influence of the six pieces of evidence on the 
final conclusion H . If the comprehensive credibility exceeds 0.5, the sample 
is judged to contain a microseismic event.



                                                                                  

Model Training

Data preprocessing

The  experimental  data  include  synthetic  data  and  field  data.  The 
theoretical underground medium model is used in the synthetic experiment 
to simulate the detected microseismic data. The field data is the monitoring 
data of four fracturing wells in a certain area. Since the amplitude of the 
original  waveform  data  fluctuates  relatively  large,  normalization  is 
performed  before  the  data  is  input  to  the  network.  The  sliding  window 
method is  used to  amplify  the amount  of  data  and solve the problem of 
sample balance in the training process to meet the requirements of the neural 
network for samples. As shown in Fig. 4, the samples use one-hot encoding, 
the positive samples containing microseismic events are marked as 1, and 
the negative samples containing only background noise are marked as 0.

If the sliding window length is a , the step length is s , and the total data 
length is L , then the total number n of samples obtained is:

n L a s= −（）                                                                                    (27)

Fig. 4. Sliding window processing of micro-seismic data.

Most  of  the  microseismic  data  received  by  the  geophone  are 
background noise, and the effective waveform only occupies a small part. 
Some  negative  samples  are  randomly  removed  to  make  the  number  of 
positive and  negative  samples  equal.  The  single trace microseismic signal 
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sampling point in the synthetic data is 10000, the sliding window length is 
set to 100, and the step size is set to 20. In this way, 9995 samples of data 
can be obtained, including 245 samples containing microseismic events. The 
amount of data is increased by 4.9 times compared to the method of simply 
setting the length of 100 to divide the data.

We simulated synthetic microseismic monitoring records, synthesized 



                                                                                  

the records using ricker wavelet convolution time series, and added different 
degrees of random noise to match the low SNR characteristics of the field 
data.  The  SNR  of  synthesized  records  are  calculated  by  the  following 
equation:

( )1010 log || || || ||F FSNR X N= ×                                                     
(28) 

where X  is one trace data; N  is the random noise; || ||Fg is the Frobenius 
norm.

Figs. 5a-5d show the synthesized signals with different SNR. As the 
SNR decreases,  noise  pollution  becomes  more  serious,  and  even  almost 
effective signal is overwhelmed. It can be seen from the figure that when 
there is no noise (Fig. 5a) and when SNR = 21dB (Fig. 5b), the microseismic 
event is clearly visible; when SNR = 11dB (Fig. 5c), the noise begins to 
seriously  influence  the effect;  When SNR = 6dB (Fig.  5d),  the effective 
signal is completely submerged in the noise, and it is difficult for the human 
eye to distinguish.

    
      
        (a) noise-free                (b) SNR = 21dB           (c) SNR = 11dB          (d) SNR = 6dB

Fig. 5. Synthetic signals with different SNR.

Model training

The training set  contains 4000 samples.  During training,  the  batch 
size is set to 200, the epoch is set to 1000, and the learning rate is set to 0.01. 
The  model  uses  Python  language  and  Pytorch  framework  as  the 
programming environment. The experiment was run on a computer equipped 
with an Intel  Core  i7  9700k processor  and 32G memory,  and the model 
performance was verified after every 10 training sessions.
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The loss function is shown in eq. (15). We backpropagate the loss to 



                                                                                  

train the network and optimize the predicted distribution that describes the 
true one by a stochastic gradient descent (SEG) optimizer. Other popular 
optimizes such as the Adam can also be used in the algorithm. From our 
experience, SEG shows reasonably good convergence for this task, and thus, 
we use this optimizer in our algorithm.

 
Figs. 6a-6b show the loss and accuracy with iterations of MSD-CNN. 

The accuracy reflects the probability of accurate detection of waveform, and 
the loss indicates the learning effect of the model. The results verify that the 
accuracy and loss of the model has not changed much in the last 600 epochs, 
indicating the model eventually approaches the fitting. The final accuracy of 
verification is 97.98%, respectively, and the losses are 0.014 and 0.042 in 
train and validation, respectively. It can be seen that the MSD-CNN model 
performs well in both training and verification.

   

           
          (a) The training and validation loss                    (b) The validation accuracy

Fig. 6. Synthetic data train results.

Input the test set samples into the network with a good performance 
model, and the detection results are shown in Table 1. Among the 800 test 
samples, half are positive samples. When noise free, both TP and FN are 
400,  which  means  that  samples  containing  microseismic  waveform  and 
samples  that  do  not  contain  microseismic  waveforms  are  all  correctly 
identified. As the SNR decrease, the more positive samples are submerged 
by noise,  the  accuracy of  the  recognition  results  gradually  decreases.  As 
shown in the table, the accuracy is 100% when there is no noise interference; 
the accuracy is 97.38% when SNR = 21dB; the accuracy is 93.75% when 
SNR =11dB; the accuracy is 91.13% when SNR = 6dB.
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Table 1. The result of model identification.

SNR 
(dB)

TP F
N

TN F
P

Noise-
free

400 0 400 0

21 390 10 389 11
11 373 27 377 23
6 360 40 369 31

    
(a) noise-free                                  (b)SNR = 21dB

  
       (c) SNR = 11dB                           (d) SNR = 6dB

Fig. 7.  Detection results of synthetic data.

Figs. 7a-7d show the partial detection results of synthetic data. It can 
be seen from the figure that when noise free (Fig. 7a) and SNR = 21dB (Fig. 
7b), the detection results obtained are all accurate. The 10 waveform have 
identified microseismic event waveforms at samples 71, 65, 57, 54, 49, 48, 
51, 53, 59, and 64, respectively. When SNR = 11dB (Fig. 7c), the detection 



                                                                                  

results include the first trace (sample 105) and the ninth trace (sample 139) 
respectively  has  a  misdetection.  When SNR = 6dB (Fig.  7d),  four  noise 
samples are misdetection as containing microseismic event waveforms.
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EXPERIMENTAL RESULTS

Network structure analysis

Compared with the  traditional  method,  the  neural  network has  the 
advantage of nonlinear mapping ability. The sample input network extracts 
the  features  through  the  convolution  layer,  activation  function,  batch 
normalization layer to get the feature map. Fig. 8a is a feature map extracted 
from a positive sample the noise is suppressed and the main trend of change 
is strengthened, through the network. Fig. 8b is a feature map extracted from 
the negative sample.  The samples are smoothed through the network, the 
main  frequency  information  is  enlarged  and  the  trend  of  change  is 
strengthened.  The  neural  network  cannot  distinguish  the  amplitude 
difference between the microseismic waveform and the noise because of the 
function of the batch normalization layer in the network, but the network can 
distinguish  the  microseismic  waveform and  the  noise  by  amplifying  the 
variation trend of the samples and the difference of frequency.

(a) Feature map of a positive sample                (b) Feature map of a negative sample

Fig. 8. Feature map.

       Low-scale features contain more detailed information, but have lower 
semantic  and  more  noise;  high-level  features  have  stronger  semantic 
information, but their ability to perceive details is poor. In the process of a 
continuous deepening of the CNN, the ability to express abstract features is 
becoming stronger, but the loss of low-scale spatial information is serious, 
and the integration of the two can improve the overall performance of the 
network.



                                                                                  

Multiscale analysis

       The C-F model tends to favor a more reliable detector, which makes the 
final result more reliable when selecting the detection result. In the training 
process, each detection result of the detector will affect its credibility, and 
the  detector  will  adjust  the  parameters  in  the  next  round  of  training  to 
improve its credibility as much as possible.
                                                         471

       To verify the validity of the multiscale, the operational status of the 
model  in  the  middle  part  of  the  microseismic  waveform  detection  is 
analyzed. For the convenience of analysis, select the following ten typical 
samples (the first half waveform with noise-free (sample 1), the complete 
waveform with noise-free (sample 4), the second half waveform with noise-
free (sample 7), and the SNR = 21dB samples (samples 2, 5, 8), SNR = 11 
dB (samples 3, 6, 9) and noise background with SNR = 6dB (sample 10)), as 
shown in Fig. 9. In the lower-scale feature maps (scale 1, scale 2, scale 3), it 
is clearly observed that the network still has a certain degree of attention to 
noise interference.  As the network deepens,  more attention is paid to the 
characteristics of microseismic waveform.

         Noise samples are still paid attention to low scales (scale 1, scale 2, 
scale3),  but  high  scales  no  longer  follow;  positive  samples  receive  high 
attention at low scales (the color is very dark), at high scales, it will distract 
a little attention, marked by the red box in Fig. 9.

Fig. 9. Analysis about Multiscale feature map.



                                                                                  

          Because the depth of the feature layer is different, the characterization 
ability is also different. At low scales, when the sample SNR is high, the 
dynamic  intensity  is  high,  but  when  the  noise  interference  is  large,  the 
dynamic intensity is still high, and even large background noise is misjudged 
as a microseismic event; at high scales, the dynamic intensity of negative 
samples is very small, but the dynamic intensity of positive samples with 
high SNR or even clean samples will  be slightly reduced.  Therefore,  the 
comprehensive calculation of the confidence factor of each scale by the C-F 
model can improve the network detection accuracy.
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Comparison

        To verify the performance of  the model,  the detection ability  of 
different methods for microseismic waveform is compared, wavelet analysis, 
BP network,  CNN network,  and  multiscale  detection  neural  network are 
used to identify microseismic data with different SNR.

       Fig. 10 shows the accuracy of the detection results of the four methods  
under the different noise disturbances. It can be seen that the model in this 
paper combines multiscale features, and the detection effect is the best. Even 
when the noise-free (shown as SNR = 30dB) pollution, the accuracy can 
reach 99.99%; the accuracy can reach 97.38% under light noise pollution 
(SNR = 21dB).

Fig. 10. Accuracy of different methods with different SNR.

        To further evaluate the performance of the model, we introduce two 
parameters, namely precision and recall.

Precision TP TP FP= +（）                                                                 (29)

TPR TP FNecall = +（）                                                                    (30)



                                                                                  

Precision is defined as the ratio of predictions that are correctly positive 
and predictions that are classed as positive (both true and false positive). 
Recall is defined as the ratio of predictions that are correctly positive and 
actual positive samples (true positive and false negative).

          Fig. 11a show the accuracy of different methods under different noise 
intensities.  Fig.  11b show the recall  of  different  methods under  different 
noise  intensities.  It  can be seen from the figure:  in  the case of  no noise 
pollution, the accuracy and recall of the four methods are all above 0.94. In 
general, the four methods show that the accuracy and recall decrease with 
the increase of noise interference. Two parameters of the three deep learning 
methods are  gradually  increased by the BP model,  the CNN model,  and 
MSD-CNN. The accuracy and recall of wavelet analysis is affected by the 
threshold value. The larger the threshold, the more positive samples cannot 
be identified, and the smaller the threshold, the more negative samples can 
be misdetected.
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(a) P of different methods under different SNR        (b) R of different methods under different SNR

Fig. 11. Precision and recall.

Randomly select 100 positive samples and negative samples with SNR 
= 21dB, SNR = 11dB, SNR = 6dB, and noise-free from test sets, and use 
wavelet  analysis,  BP model,  CNN model,  and  MSD-CNN to  obtain  the 
values of precision and recall  for each method. As shown in Fig. 12, the 
precision and recall of MSD-CNN is higher than the other two deep learning 
methods.  The precision of  the wavelet  analysis  method is slightly  higher 
than MSD-CNN, but its recall and accuracy is lower than MSD-CNN.



                                                                                  

Fig. 12. Precision and Recall of different.

The time consuming of identifying 4000 samples by wavelet analysis, 
BP network, CNN network, and MSD-CNN is shown in Fig. 13. Wavelet 
analysis is much more time-consuming than deep learning. Among the deep 
learning methods, the detection of the BP model consumes the least time, 
followed by CNN. MSD-CNN is slower than the other two methods because 
the increase in the number of detectors and parameter calculation. But to 
obtain  increased  accuracy,  it’s  worthwhile  to  increase  the  average  time-
consuming.
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Fig.13. Time consuming of different methods

Field data event detection

Due to differences in lithological characteristics, natural cracks, and 



                                                                                  

soil thickness, the noise contained in the microseismic waveform in different 
regions is various, and the microseismic data collected in the same region 
due to the equipment and operating environment will also be very different. 
The filed microseismic data is 100 traces from four fractured wells.  The 
monitoring  data  of  each  well  is  randomly  selected  60  traces.  After 
preprocessing, the network is trained again on the model obtained from the 
simulation data. The remaining data of each fractured well were used for 
testing, and the results prove that the model can effectively identify field 
microseismic events.

Figs.  14a-14d shows the partial  monitoring waveform data  of  four 
fractured wells. The data of Well 1 suffers a lot of noise interference, which 
almost floods the effective microseismic signal from a single trace; The data 
of  Wells  2  and  3  suffer  from  less  noise  pollution  and  the  amplitude 
characteristics of the microseismic signal are more obvious; Well 4 data had 
strong intermittent interference and macroshock events; Figs. 15a-15d show 
the  partial  detection  results  of  the  four  wells.  It  can  be  seen  from  the 
recognition results that was misdetected noise samples and the microseismic 
events have a great similarity in the waveform, and it is extremely difficult 
for  the  human eye  to  distinguish.  The  recognition  results  show that  our 
proposed method has good generalization ability and can effectively identify 
microseismic events from field data.
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           (a) Well 1                                                  (b) Well 2



                                                                                  

            (c) Well 3                                                  (d) Well 4

Fig. 14. Waveform data of different wells.

    
             (a) Well 1                                                           (b) Well 2

   

(c) Well 3                                               (d) Well 4

Fig. 15. Detection results of different wells.
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DISCUSSION AND CONCLUSIONS

In this study, we proposed a method of microseismic event detection 
based  on  a  multiscale  neural  network.  The  MSD-CNN  model  is  built 
according  to  the  natural  multiscale  feature  extracted  from  the  neural 
network, detectors are trained to detect microseismic events at each scale, 
and the contribution of  each scale  detection results  to the final  detection 
result is determined by the C-F model. The experimental results show that 
the model has certain anti-noise ability and generalization ability.



                                                                                  

          However, the waveform of microseismic data is diverse and the 
generalization ability of the network is limited, which can not guarantee the 
good detection ability of microseismic data in all regions. Further research is 
needed  to  find  an  automatic  microseismic  detection  method  suitable  for 
multiple regions. Moreover, there are many types of microseisms, such as oil 
and  gas  production  microseisms,  marine  microseisms,  landslide 
microseisms,  volcanic  microseisms,  tunnel  collapse microseisms,  etc.  our 
method can not directly distinguish which type of microseisms belong to. 
Therefore,  looking for  a deep learning method that  can not only identify 
microseismic  events,  but  also  distinguish  different  types  of  microseismic 
events is also the focus of further research.
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