AccScience Publishing / JSE / Volume 34 / Issue 3 / DOI: 10.36922/JSE025230010
Cite this article
3
Download
18
Citations
52
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Reconstruction and quality control of non-repeatable land time-lapse seismic data

Yongjun Wang1 Xinglei Xu1,2* Xu Wang3,4
Show Less
1 Teaching and Research Office of Software Technology, School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, Zhejiang, China
2 Department of Information Science, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
3 Institute of Applied Mechanics, Faculty of Civil Engineering, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
4 Northeast Electric Power Design Institute of China Power Engineering Consulting Group, Changchun, Jilin, China
JSE 2025 , 34(3), 76–92; https://doi.org/10.36922/JSE025230010
Submitted: 6 June 2025 | Revised: 16 August 2025 | Accepted: 3 September 2025 | Published: 16 October 2025
© 2025 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Onshore non-repeatable time-lapse (TL) seismic exploration is a challenging yet convenient technique for enhancing production in mature oil and gas fields. Data repeatability across two or more acquisition phases is fundamental for reliable TL analysis. However, differences in acquisition geometries – from variations in geological targets, acquisition technologies, and acquisition parameters – can cause significant inconsistencies between two data vintages. Drawing on survey design parameters, this study proposes a dual-constraint method for data reconstruction and quality control, integrating common midpoint (CMP) similarity with the sum of shot-receiver geometric distances. Unlike conventional techniques, the proposed approach simultaneously controls shot and receiver position errors through a dynamic threshold, indirectly preserving offset and azimuth consistency. Compared with typical methods, it avoids cross-domain transformations and multi-parameter adjustments, offering high applicability. Applied to conventional (2004) and high-density (2008) datasets from a Chinese onshore oilfield, the method achieved data utilization rates of 77.5% and 39.8%, respectively. The reconstructed data demonstrated higher offset distribution uniformity and improved CMP fold consistency compared with the CMP-constrained receiver deviation method. This study provides a practical reference for TL studies in onshore mature oilfields.

Keywords
Onshore seismic exploration
Non-repeatable time-lapse seismic data
Pre-stack data reconstruction
Funding
This work was supported by the Key Scientific Research Project (Grant No. WZY2025007) and Research Project on Teaching Development and Teaching Reform (Grant No. WZYzd202519) of Wenzhou Polytechnic, China; the Zhejiang Province Vocational Education “14th Five- Year Plan” Teaching Reform Project, China (Grant No. jg20240086); and the Wenzhou Significant Science and Technology Innovation Project, China (Grant No. ZG2022012).
References
  1. Wang Z. Feasibility of time-lapse seismic reservoir monitoring: The physical basis. Leading Edge. 1997;16(9):1327-1329. doi: 10.1190/1.1437796

 

  1. Guerin G, He W, Anderson RN, et al. 4D seismic: The fourth dimension in reservoir management Part 5-Reservoir simulation as a tool to validate and constrain 4-D seismic analysis. World Oil. 1997;218(9):75-79.

 

  1. Nur A, Tosaya C, Thanh DV. Seismic Monitoring of Thermal Enhanced oil Recovery Processes. In: Expanded Abstracts of the 54th Annual International SEG Meeting. SEG; 1984. p. 337-340. doi: 10.1190/1.1894015

 

  1. Greaves RJ, Fulp TJ. Three-dimensional seismic monitoring of an enhanced oil recovery process. Geophysics. 1987;52(9):1175-1187. doi: 10.1190/1.1442381

 

  1. Efnik MS, Taib SH, Islami N. Using time-lapse 4D seismic to monitor saturation changes in carbonate reservoirs. J Pet Explor Prod Technol. 2016;88(6):736-742. doi: 10.1007/s12594-016-0541-3

 

  1. Xin KL. Application of 4D seismic technology in SAGD steam chamber monitoring. Pet Geophys Prospect. 2019;54(4):882-890. doi: 10.13810/j.cnki.issn.1000-7210.2019.04.020

 

  1. Lumley DE. Time-lapse seismic reservoir monitoring. Geophysics. 2001;66(1):50-53. doi: 10.1190/1.1444921

 

  1. Jenkins SD, Waite MW, Bee MF. Time-lapse monitoring of the Duri steamflood: A pilot and case study. Leading Edge. 1997;16(9):1267-1273. doi: 10.1190/1.1437778

 

  1. Nguyen PKT, Nam MJ, Park C, Park C. A review on time-lapse seismic data processing and interpretation. Geosci J. 2015;19(2):375-392. doi: 10.1007/s12303-014-0054-2

 

  1. Sambo C, Iferobia CC, Babasafari AA, Rezaei S, Akanni OA. The role of time lapse (4D) seismic technology as reservoir monitoring and surveillance tool: A comprehensive review. J Nat Gas Sci Eng. 2020;80:103312. doi: 10.1016/j.jngse.2020.103312

 

  1. Emami Niri M. 3D and 4D seismic data integration in static and dynamic reservoir modeling: A review. J Pet Sci Eng. 2018;167:514-529. doi: 10.22078/jpst.2017.2320.1407

 

  1. Zhuang H, Xu Y. 4D seismic data processing and its key techniques. Prog Geophys. 1999;14(2):33-43.

 

  1. Yang Q, Zhong W. 4D seismic technique in oil and gas field development. Geophys Prospect Pet. 1999;38(3):50-57.

 

  1. Wu D, Li Z, Jiang B, Huang X, Li F, Chen X. The problems for land non-repeated time-lapse seismic data processing and its countermeasures. Pet Geophys Prospect. 2015;54(4):427-434. doi: 10.3969/j.issn.1000-1441.2015.04.009

 

  1. Guo N, Shang X, Liu X, Wang S. Key techniques for non-repeated time-lapse seismic data processing technology. Pet Geophys Prospect. 2011;46(4):581-592. doi: 10.1007/s12182-011-0118-0

 

  1. Ling Y, Huang X, Gao J, Lin J, Sun D. Case study of non-repeatable acquisition in time-lapse seismic exploration. Geophys Prospect Pet. 2007;46(3):231-248. doi: 10.3969/j.issn.1000-1441.2007.03.003

 

  1. Li J, Chen X. Feasibility analysis and evaluation technology of time-lapse seismic reservoir monitoring. Geophys Prospect Pet. 2012;51(2):125-132. doi: 10.3969/j.issn.1000-1441.2012.02.003

 

  1. Zhang A. Research on key techniques of time-lapse seismic feasibility demonstration. Petrochem Technol. 2024;31(2):204-206. doi: 10.3969/j.issn.1006-0235.2024.02.070

 

  1. Liu W, Deng H, Zhang L, Huang F, Li F, Chen X. Feasibility study of time-lapse seismic acquisition timing: A case study in the L gas field. Geophys Prospect Pet. 2022;61(3):490-498. doi: 10.3969/j.issn.1000-1441.2022.03.011

 

  1. Zhou X, Xia T, Zhang Z, Liu X. Application of pseudo-time-lapse seismic to residual oil analysis in the middle and late stages of oilfield development. Geophys Prospect Pet. 2024;63(2):449-458. doi: 10.12431/issn.1000-1441.2024.63.02.016

 

  1. Yang W. 3D Processing and Interpretation Integration Group. Study on analysis and monitoring methods of 3D seismic data. Pet Geophys Prospect. 2002;(5):433-440. doi: 10.3321/j.issn:1000-7210.2002.05.001

 

  1. Rosa DR, Schiozer DJ, Davolio A. Evaluating the impact of 4D seismic data artefacts in data assimilation. Pet Geosci. 2023;29(3):603-614. doi: 10.1144/petgeo2022-069

 

  1. Yin C, Ge ZJ, Rui Y, Zhao S, Cui Q. Feasibility study on time-lapse seismic reservoir monitoring with non-uniform acquisition. J Southwest Pet Univ Nat Sci Ed. 2014;36(1):170-180. doi: 10.11885/j.issn.1674-5086.2013.10.28.01

 

  1. Jin L, Chen X, Liu Q. Quality control method of time-lapse seismic cross-equalization processing with correlation parameters. Nat Gas Ind. 2005;25(11):33.doi: 10.3321/j.issn:1000-0976.2005.11.011

 

  1. Lü X, Chen X, Diao S. An approach to time-lapse seismic rebinning and its realization. Prog Explor Geophys. 2004;27(3):117-181.

 

  1. Yang H, Li D, Zhang H, Yang J, Ma N. Key Technology of Time-Lapse Processing on Land. In: Proceedings of the 2020 International Field Exploration and Development Conference. Chengdu China; 2020. p. 7. doi: 10.26914/c.cnkihy.2020.042217

 

  1. Rui YJ. Key techniques for time-lapse seismic processing with non-uniform onshore acquisition. Geophys Geochem Explor. 2016;40(4):778-782. doi: 10.11720/wtyht.2016.4.22

 

  1. Rui YJ, Shang XM. Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield. Geophys Geochem Explor. 2021;45(6):1439-1447. doi: 10.11720/wtyht.2021.1219

 

  1. Jin L, Chen X. Hybrid factor processing method of cross-equalization for time-lapse seismic. Pet Geophys Prospect. 2005;40(4):400-406. doi: 10.3321/j.issn:1000-7210.2005.04.011

 

  1. Jin L, Chen X. Effects of time-lapse seismic non-repeatability and verification of cross-equalization processing. Prog Explor Geophys. 2003;26(1):45-48.

 

  1. Guo N, Meng Y, Yang W, Li H. Repeatability measurement and consistency analysis methods for time-lapse seismic data. Comput Techn Geophys Geochem Explor. 2012;34(2):186-192. doi: 10.3969/j.issn.1001-1749.2012.02.014

 

  1. Guo N, Wu G, Shang X. Application of cross-equalization method in non-repeatable time-lapse seismic data processing. Pet Geophys Prospect. 2011;50(6):600-606. doi: 10.3969/j.issn.1000-1441.2011.06.010

 

  1. Wang Y, Shen G, Xu H, Fu J, Shan L. Key Technology Applications of Non-Uniform Time-Lapse Seismic. In: Proceedings of the SPG/SEG Beijing 2016 International Geophysical Conference. Beijing China; 2016. p. 382- 385. Available from: https://d.wanfangdata.com.cn/conference/ChtDb25mZXJlbmNlTmV3UzIwMjU4MjAxMDQxNTUSBzk1NjY3ODYaCDU4bGw1dmFq [Last accessed on 30 May 2025].

 

  1. Zhu Z, Wang X, He Y, Sang S, Li L, Liu Z, et al. Research and application of key marine time-lapse seismic technologies. China Offshore Oil and Gas. 2018;30(4):76-85. doi: 10.11935/j.issn.1673-1506.2018.04.009

 

  1. Wang D, Liu J, Qiu B, Yan H. Quality control technology of ocean time-lapse seismic data processing. Chin J Eng Geophys. 2018;15(3):253-260.

 

  1. Liu W, Lei X, Sui B, Li Y, Chen F, Liu Z, et al. Research on non-repeatable time-lapse seismic matching processing based on OBC and streamer data. Prog Geophys. 2025:1-13.

 

  1. Chen CQ, Dai HT, Gao Q, Chen J, Luo W, Wang Z. A processing method for seismic data consistency under complex surface conditions and its applications. Geophys Geochem Explor. 2023;47(4):954-964. doi: 10.11720/wtyht.2023.1162

 

  1. Liu L, Chen S, Wang YL, Xiao Y, Yue H. Research on the application of mixed source data matching processing technology in 3D seismic exploration of coal field. Prog Geophys. 2024;39(5):1951-1962. doi: 10.6038/pg2024HH0498

 

  1. Fomel S, Jin L. Time-lapse image registration using the local similarity attribute. Geophysics. 2009;74(2):A7-A11. doi: 10.1190/1.2793090

 

  1. Liu X, Chen X, Bai M, Chen Y. Time-lapse image registration by high-resolution time-shift scan. Geophysics. 2021;86(3):M49-M58. doi: 10.1190/geo2020-0459.1

 

  1. Chen X, Yang X, Xiao P, Lv W, Zhang X, Duan R. Application of time-lapse seismic technology in deepwater turbidite reservoir monitoring: A case study of the deep water fan a oilfield in West Africa. Geophys Prospect Pet. 2023;62(3):538-547. doi: 10.12431/issn.1000-1441.2023.62.03.015

 

  1. Dong FS, Fu LY, Quan HY, Dong K. Matched multi-trace geometry repeatability for time lapse seismic. Chin J Geophys. 2016;59(8):3056-3067. doi: 10.6038/cjg20160828

 

  1. Wu Y, Ling Y, Zhang Y, Guo X. Case study of towed streamer time-lapse seismic acquisition design in offshore areas. Pet Geophys Prospect. 2016;51(1):1-12. doi: 10.13810/j.cnki.issn.1000-7210.2016.01.001

 

  1. Li X, Hu G, Fan T, et al. The application conditions and prospects of time-lapse seismic technology in offshore oilfield. China Offshore Oil Gas. 2015;27(6):48-52. doi: 10.11935/j.issn.1673-1506.2015.06.008

 

  1. Zhou J, Xie Y, Chen Z, Wang S. Application of time-lapse seismic in offshore gas fields in China. Prog Explor Geophys. 2011;46(2):285-292. 

 

  1. Zhou J, Zhang L, Liu W, Hu L, Wang Q. Application of time-lapse seismic gas reservoir monitoring in the Yacheng 13-1 gas field. Geophys Prospect Pet. 2020;59(4):637-646. doi: 10.3969/j.issn.1000-1441.2020.04.014

 

  1. Smit JA, Brain J, Watt K. Repeatability Monitoring During Marine 4D Streamer Acquisition. In: Extended Abstracts of the 67th EAGE Conference and Exhibition. EAGE; 2005. p. C015. doi: 10.3997/2214-4609-pdb.1.C015

 

Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing