Seismic noise attenuation based on a dip-separated filtering method

Lv, H., 2020. Seismic noise attenuation based on a dip-separated filtering method. Journal of Seismic Exploration, 29: 327-342. Mode decomposition and reconstruction is a commonly used denoising algorithm for seismic data. The principle of the decomposition based method is that the signal and noise can be represented by different parts in a mode decomposition process. While the eatures of useful signals can be captured by the principal components, the noise is separated out by rejecting the less important components during the reconstruction process. The decomposition based method can be optimally applied in the requency-space domain, where signal and noise are separated by their differences in the wavenumber spectrum. The useful signals are mainly corresponding to the ow-wavenumber components, i.e., less oscillating, while the noise corresponds to the ighly oscillating components. Such decomposition acts as a dip filter, which can be combined with a spatial coherency based smoothing operator. The overall algorithm is thus a dip-separated structural filtering method. In this paper, we use the variational mode decomposition (VMD) method to decompose the seismic data into several dipping components, which is followed by a low-rank approximation filtering step. We apply the proposed method to both synthetic and field data examples and obtain satisfactory results.
- Chen, Y., Bai, M. and Chen, Y., 2019. Obtaining free array data by multi-dimensional
- seismic reconstruction. Nature Comm., 10: 4434.
- Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noise
- orthogonalization. Geophysics, 80: WD1-WD9.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
- decomposition predictive filtering. Geophysics, 79: V81-V91.
- Chen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
- attenuation. Geophysics, 81(2): V17-V30.
- Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. and Zhang, D., 2017. Empirical low
- rank decomposition for seismic noise attenuation. IEEE Transact. Geosci. Remote
- Sens., 55: 4696-4711.
- Dragomiretskiy, K. and Zosso, D., 2014. Variational mode decomposition. IEEE
- Transact. Signal Process., 62: 531-544.
- Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016. Velocity analysis of
- simultaneous-source data using high-resolution semblance-coping with the strong
- noise. Geophys. J. Internat., 204: 768-779.
- Gulunay, N., 2000. Noncausal spatial prediction filtering for random noise reduction on
- 3-D poststack data. Geophysics, 65: 1641-1653.
- Hestenes, M.R., 1969. Multiplicr and gradient methods. J. Optimiz. Theory Appl., 4:
- 303-320.
- Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel
- singular spectrum analysis for 3D random noise attenuation. Geophysics, 81(4):
- V261-V270.
- Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least squares projections
- method for signal estimation. IEEE Transact. Geosci. Remote Sens., 55: 4111-4129.
- Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction using
- randomized-order multichannel singular spectrum analysis. Geophysics, 82(2):
- V59-V74.
- Jiao, S., Chen, Y., Bai, M., Yang, W., Wang, E. and Gan, S., 2015. Ground rolls
- attenuation using non-stationary matching filtering. J. Geophys. Engineer., 12: 922-
- Liu, C., Chen, C., Wang, D., Liu, Y., Wang, S. and Zhang, L., 2015a. Seismic dip
- estimation based on the two-dimensional Hilbert transform and its application in
- random noise attenuation. Appl. Geophys., 12: 55-63.
- Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary prediction
- filtering for random noise attenuation on 3D seismic data. J. Appl. Geophys., 93:
- 60-66.
- Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-x
- regularized nonstationary autoregression: Geophysics, 77: V61-V69.
- Liu, L., Ma, J., Zhang, X. and Plonka, G., 2018a. Sparse graph-regularized dictionary
- learning for suppressing random seismic noise. Geophysics, 83(3): V215-V231.
- Liu, W., Cao, S. and Chen, Y., 2016. Applications of variational mode decomposition in
- seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018b, A novel hydrocarbon detection
- approach via high-resolution frequency-dependent AVO inversion based on
- variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56:
- 2007-2024.
- Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017. Spectral decomposition for
- hydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci.
- Remote Sens. Lett., 14: 539-543.
- Liu, Y., Fomel, S. and Liu, C., 2015b. Signal and noise separation in prestack seismic
- data using _velocity-dependent selslet transform. Geophysics, 80(6):
- WD117-WD128.
- Mousavi, S.M. and Langston, C.A., 2017. Automatic noise-removal/signal-removal
- based on general cross-validation thresholding in synchrosqueezed domain and its
- application on earthquake data. Geophysics, 82(4): V211-V227.
- Naghizadeh, M., and Sacchi, M.D., 2012. Multicomponent seismic random noise
- attenuation via vector autoregressive operators: Geophysics, 78, no. 2, V91-V99.
- Oropeza, V. and Sacchi, M., 2010, A randomized SVD for multichannel singular
- spectrum analysis (mssa) noise attenuation. Expanded Abstr., 80th Ann. Internat.
- SEG Mtg., Denver: 3539-3544.
- Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and
- reconstruction via multichannel singular spectrum analysis. Geophysics, 76:
- V25-V32.
- Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017. Simultaneous
- denoising and interpolation of 3D seismic data via damped data-driven optimal
- singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Tian, Y., Li, Y. and Yang, B., 2014. Variable-eccentricity hyperbolic-trace TFPF for
- seismic random noise attenuation. IEEE Transact. Geosci. Remote Sens., 52:
- 6449-6458.
- Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016. Amplitude-preserving nonlinear adaptive
- multiple attenuation using the high-order sparse radon transform. J. Geophys.
- Engineer., 13: 207-219.
- Yang, W., Wang, R., Chen, Y., Wu, J., Qu, S., Yuan, J. and Gan, S., 2015. Application
- of spectral decomposition using regularized non-stationary autoregression to random
- noise attenuation. J. Geophys. Engineer., 12: 175-187.
- Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid
- rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D
- seismic data. Geophysics, 82(5): V351-V367.
- Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an
- online subspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
- Zhou, Y. and Zhang, S., 2017. Robust noise attenuation based on nuclear norm
- minimization and a trace prediction strategy. J. Appl. Geophys., 147: 52-67.
- Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodically
- varying code for improving deblending of simultaneous sources in marine
- acquisition. Geophysics, 81: V213-V225.
- Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017. Iterative
- deblending of simultaneous-source data using a coherency-pass shaping operator.
- Geophys. J. Internat., 211: 541-557.