ARTICLE

Seismic noise attenuation based on a dip-separated filtering method

HUI LV
Show Less
School of Civil Engineering and Architecture, Nanchang Hangkong University, 696 South Fenghe Av., Nanchang 330063, Jiangxi Province, P. R. China.,
JSE 2020, 29(4), 327–342;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Lv, H., 2020. Seismic noise attenuation based on a dip-separated filtering method. Journal of Seismic Exploration, 29: 327-342. Mode decomposition and reconstruction is a commonly used denoising algorithm for seismic data. The principle of the decomposition based method is that the signal and noise can be represented by different parts in a mode decomposition process. While the eatures of useful signals can be captured by the principal components, the noise is separated out by rejecting the less important components during the reconstruction process. The decomposition based method can be optimally applied in the requency-space domain, where signal and noise are separated by their differences in the wavenumber spectrum. The useful signals are mainly corresponding to the ow-wavenumber components, i.e., less oscillating, while the noise corresponds to the ighly oscillating components. Such decomposition acts as a dip filter, which can be combined with a spatial coherency based smoothing operator. The overall algorithm is thus a dip-separated structural filtering method. In this paper, we use the variational mode decomposition (VMD) method to decompose the seismic data into several dipping components, which is followed by a low-rank approximation filtering step. We apply the proposed method to both synthetic and field data examples and obtain satisfactory results.

Keywords
noise attenuation
filtering
variational mode decomposition
References
  1. Chen, Y., Bai, M. and Chen, Y., 2019. Obtaining free array data by multi-dimensional
  2. seismic reconstruction. Nature Comm., 10: 4434.
  3. Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noise
  4. orthogonalization. Geophysics, 80: WD1-WD9.
  5. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
  6. decomposition predictive filtering. Geophysics, 79: V81-V91.
  7. Chen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
  8. attenuation. Geophysics, 81(2): V17-V30.
  9. Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W. and Zhang, D., 2017. Empirical low
  10. rank decomposition for seismic noise attenuation. IEEE Transact. Geosci. Remote
  11. Sens., 55: 4696-4711.
  12. Dragomiretskiy, K. and Zosso, D., 2014. Variational mode decomposition. IEEE
  13. Transact. Signal Process., 62: 531-544.
  14. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016. Velocity analysis of
  15. simultaneous-source data using high-resolution semblance-coping with the strong
  16. noise. Geophys. J. Internat., 204: 768-779.
  17. Gulunay, N., 2000. Noncausal spatial prediction filtering for random noise reduction on
  18. 3-D poststack data. Geophysics, 65: 1641-1653.
  19. Hestenes, M.R., 1969. Multiplicr and gradient methods. J. Optimiz. Theory Appl., 4:
  20. 303-320.
  21. Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel
  22. singular spectrum analysis for 3D random noise attenuation. Geophysics, 81(4):
  23. V261-V270.
  24. Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least squares projections
  25. method for signal estimation. IEEE Transact. Geosci. Remote Sens., 55: 4111-4129.
  26. Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction using
  27. randomized-order multichannel singular spectrum analysis. Geophysics, 82(2):
  28. V59-V74.
  29. Jiao, S., Chen, Y., Bai, M., Yang, W., Wang, E. and Gan, S., 2015. Ground rolls
  30. attenuation using non-stationary matching filtering. J. Geophys. Engineer., 12: 922-
  31. Liu, C., Chen, C., Wang, D., Liu, Y., Wang, S. and Zhang, L., 2015a. Seismic dip
  32. estimation based on the two-dimensional Hilbert transform and its application in
  33. random noise attenuation. Appl. Geophys., 12: 55-63.
  34. Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary prediction
  35. filtering for random noise attenuation on 3D seismic data. J. Appl. Geophys., 93:
  36. 60-66.
  37. Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-x
  38. regularized nonstationary autoregression: Geophysics, 77: V61-V69.
  39. Liu, L., Ma, J., Zhang, X. and Plonka, G., 2018a. Sparse graph-regularized dictionary
  40. learning for suppressing random seismic noise. Geophysics, 83(3): V215-V231.
  41. Liu, W., Cao, S. and Chen, Y., 2016. Applications of variational mode decomposition in
  42. seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
  43. Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018b, A novel hydrocarbon detection
  44. approach via high-resolution frequency-dependent AVO inversion based on
  45. variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56:
  46. 2007-2024.
  47. Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017. Spectral decomposition for
  48. hydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci.
  49. Remote Sens. Lett., 14: 539-543.
  50. Liu, Y., Fomel, S. and Liu, C., 2015b. Signal and noise separation in prestack seismic
  51. data using _velocity-dependent selslet transform. Geophysics, 80(6):
  52. WD117-WD128.
  53. Mousavi, S.M. and Langston, C.A., 2017. Automatic noise-removal/signal-removal
  54. based on general cross-validation thresholding in synchrosqueezed domain and its
  55. application on earthquake data. Geophysics, 82(4): V211-V227.
  56. Naghizadeh, M., and Sacchi, M.D., 2012. Multicomponent seismic random noise
  57. attenuation via vector autoregressive operators: Geophysics, 78, no. 2, V91-V99.
  58. Oropeza, V. and Sacchi, M., 2010, A randomized SVD for multichannel singular
  59. spectrum analysis (mssa) noise attenuation. Expanded Abstr., 80th Ann. Internat.
  60. SEG Mtg., Denver: 3539-3544.
  61. Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and
  62. reconstruction via multichannel singular spectrum analysis. Geophysics, 76:
  63. V25-V32.
  64. Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017. Simultaneous
  65. denoising and interpolation of 3D seismic data via damped data-driven optimal
  66. singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  67. Tian, Y., Li, Y. and Yang, B., 2014. Variable-eccentricity hyperbolic-trace TFPF for
  68. seismic random noise attenuation. IEEE Transact. Geosci. Remote Sens., 52:
  69. 6449-6458.
  70. Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016. Amplitude-preserving nonlinear adaptive
  71. multiple attenuation using the high-order sparse radon transform. J. Geophys.
  72. Engineer., 13: 207-219.
  73. Yang, W., Wang, R., Chen, Y., Wu, J., Qu, S., Yuan, J. and Gan, S., 2015. Application
  74. of spectral decomposition using regularized non-stationary autoregression to random
  75. noise attenuation. J. Geophys. Engineer., 12: 175-187.
  76. Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid
  77. rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D
  78. seismic data. Geophysics, 82(5): V351-V367.
  79. Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an
  80. online subspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
  81. Zhou, Y. and Zhang, S., 2017. Robust noise attenuation based on nuclear norm
  82. minimization and a trace prediction strategy. J. Appl. Geophys., 147: 52-67.
  83. Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodically
  84. varying code for improving deblending of simultaneous sources in marine
  85. acquisition. Geophysics, 81: V213-V225.
  86. Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017. Iterative
  87. deblending of simultaneous-source data using a coherency-pass shaping operator.
  88. Geophys. J. Internat., 211: 541-557.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing