Sandstone porosity prediction based on gated recurrent units

Song, H., Chen, W., Zhang, H., Wang, Y. and Xue, Y.J., 2020. Sandstone porosity prediction based on gated recurrent units. Journal of Seismic Exploration, 29: 371-388. Sandstone porosity prediction is a difficult task because of the heterogeneity of reservoir rock. Deep learning has been widely used in various fields, but it is rarely used for sandstone porosity prediction. Recurrent neural networks (RNNs) are currently very popular algorithms for deep learning and have achieved good performance in processing sequence data, such as speech recognition and machine translation. Since sandstone porosity prediction belongs to sequence data prediction, this paper proposes to use the gated recurrent units (GRUs), which is a variant of RNNs, to predict sandstone porosity using the well logs data. Six well logs data are divided into training set, validation set and testing set. We apply three deep learning architectures including convolutional neural networks (CNNs), recurrent neural networks (RNNs) and gated recurrent units (GRUs) to predict sandstone porosity. Results show that GRUs can extract the nonlinear characteristics of data more effectively and are more suitable for sandstone porosity prediction.
- Ahmadi, M.A., Zendehboudi, S., Lohi, A., Elkamel, A. and Chatzis, I, 2013. Reservoir
- permeability prediction by neural networks combined with hybrid genetic algorithm and
- particle swarm optimization. Geophys. Prosp., 61, 582-598.
- Bengio, Y., Simard, P. and Frasconi, P., 1994. Learning long-term dependencies with gradient
- descent is difficult. IEEE Transact. Neural Netw., 5: 157-166.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2016a. Multiple-reflection noise attenuation
- using adaptive randomized- order empirical mode decomposition. IEEE Geosci. Remote
- Sens. Lett., 14: 18-22.
- Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017a. Preparing the initial model for iterative
- deblending by median filtering. J. Seismic Explor, 26: 25-47.
- Chen, Y., Hill, J., Lei, W., Lefebvre, M., Tromp, J., Bozdag, E. and Komatitsch, D., 2017b.
- Automated time-window selection based on machine learning for full-waveform
- inversion. Expanded Abstr., 87th Ann. Internat. SEG Mtg., Houston: 1604-1609.
- Chen, Y., Huang, W., Zhang, D. and Chen, W., 2016b. An open-source matlab code package for
- improved rank-reduction 3D seismic data denoising and reconstruction. Comput. Geosci., 95:
- 59-66.
- Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. 2014. Empirical evaluation of gated
- recurrent neural network on sequence modeling. arXiv preprint arXiv:1412.3555.
- Cracknell, M.J. and Reading, A.M. 2013. The upside of uncertainty: Identification of
- lithology contact zones from airborne geophysics and satellite data using random forests and
- support vector machines. Geophysics, 78(3): WB113-WB126.
- Fattahi, H. and Karimpouli, S., 2016. Prediction of porosity and water saturation using
- pre-stack seismic attributes: a comparison of Bayesian inversion and computational
- intelligence methods: Comput. Geosci., 20: 1075-1094.
- Helle, H.B., Bhatt, A. and Ursin, B., 2001. Porosity and permeability prediction from
- wire-line logs using artificial neural networks: a north sea case study. Geophys. Prosp., 49:
- 431-444.
- Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke, V.,
- Nguyen, P. and Sainath, T.N., 2012. Deep neural networks for acoustic modeling in speech
- recognition: The shared views of four research groups. IEEE Sign. Process. Mag., 29: 82-97.
- Hinton, G.E., Osindero, S. and Teh, Y.-W., 2006. A fast learning algorithm for deep belief
- nets. Neural Comput., 18: 1527-1554.
- Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Comput., 9:
- 1735-1780.
- Iturrar’an-Viveros, U. and Parra, J.O., 2014. Artificial neural networks applied to estimate
- permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J.
- Appl. Geophys., 107: 45-54.
- Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M. and Cun, Y.L., 2010.
- Learning convolutional feature hierarchies for visual recognition. Adv. Neur. Inform.
- Process. Syst., 1090-1098.
- Liu, W. and Chen, W., 2019. Recent advancements in empirical wavelet transform and its
- applications. IEEE Access, 7: 103770-103780.
- Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word
- representations in vector space. arXiv preprint arXiv:1301.3781.
- Paitz, P., Gokhberg, A. and Fichtner, A., 2017. A neural network for noise correlation
- classification. Geophys. J. Internat., 212: 1468-1474.
- Pal, M., 2006. Support vector machines-based modelling of seismic liquefaction potential.
- Internat. J. Numer. Analyt. Meth. Geomechan., 30: 983-996.
- Reynen, A. and Audet, P., 2017. Supervised machine learning on a network scale: Application to
- seismic event classification and detection. Geophys. J. Internat., 210: 1394-1409.
- Rogers, S., Chen, H., Kopaska-Merkel, D. and Fang, J., 1995. Predicting permeability from
- porosity using artificial neural networks. AAPG Bull., 79: 1786-1796.
- Siahsar, M.A.N., Gholtashi, S., Torshizi, E.O., Chen, W. and Chen, Y., 2017. Simultaneous
- denoising and interpolation of 3-D seismic data via damped data-driven optimal singular
- value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Yuan, S., Liu, J., Wang, S.. Wang, T. and Shi, P., 2018. Seismic waveform classification and
- first-break picking using convolution neural networks. IEEE Geosci. Remote Sens. Lett. 15:
- 272-276.
- Zhang, G., Wang, Z. and Chen, Y., 2018a. Deep learning for seismic lithology prediction.
- Geophys. J. Internat., 215: 1368-1387.
- Zhang, G., Wang, Z., Li, H., Sun, Y., Zhang, Q. and Chen, W., 2018b. Permeability prediction of
- isolated channel sands using machine learning. J. Appl. Geophys., 159: 605-615.
- Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L., 2017. Beyond a Gaussian denoiser:
- Residual learning of deep CNN for image denoising. IEEE Transact. Image Process., 26:
- 3142-3155.
- Zhao, T., Jayaram, V., Marfurt, K.J. and Zhou, H., 2014. Lithofacies classification in barnett
- shale using proximal support vector machines. Expanded Abstr., 84 Ann. Internat. SEG
- Mtg., Denver: 1491-1495.