Cite this article
1
Download
45
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Seismic full-waveform inversion using decomposed P-wavefield

SOOYOON KIM1 WOOKEEN CHUNG2 SUNGRYUL SHIN2 DAWOON LEE1
Show Less
1 Department of Ocean Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
2 Department of Energy and Resources Engineering, Korea Maritime and Ocean University, Busan, South Korea.,
JSE 2020, 29(3), 201–224;
Submitted: 21 May 2019 | Accepted: 25 February 2020 | Published: 1 June 2020
© 2020 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Kim, S.Y., Chung, W.K., Shin, S.R. and Lee, D.W.. 2020. Seismic full-waveform inversion using decomposed P-wavefield. Journal of Seismic Exploration, 29: 201-224. Here we describe the development of a seismic full-waveform inversion method which employs P-wavefield decomposition to obtain accurate velocity information. Briefly, P-wavefield decomposition for multi-component data was performed with Helmholtz decomposition in elastic media and an objective function. To achieve efficient inversion, application of a back-propagation technique is essential. Therefore, a stress tensor was used for P-wavefield decomposition to allow application of a back- propagation technique. Our proposed inversion algorithm was validated with synthetic data obtained from the Marmousi2 velocity model which simulated an ocean bottom, multi-component survey. The subsurface information obtained with our inversion method was more accurate in regard to velocity and structure compared with a conventional elastic inversion method. In addition. the application of our inversion method to synthetic data simulating an ocean bottom seismometer survey which uses a small number of receivers also obtained better results in a numerical test.

Keywords
full-waveform inversion
P-wavefield decomposition
multi-component
elastic
References
  1. Amundsen, L., Ikelle, L. and Martin, J., 1998. Multi attenuation and P/S splitting of OBCdata: A heterogeneous sea floor. Expanded Abstr., 68th Ann. Internat. SEGMtg., New Orleans: 722-725.
  2. Claerbout, J.F. and Muir, F., 1973. Robust modeling with erratic data. Geophysics, 38:826-844.
  3. Crase, E., Pica, A., Nobel, M., McDonald, J. and Tarantola, A., 1990. Robust elasticnonlinear waveform inversion: Application to real data. Geophysics, 55: 527-
  4. Choi, Y., Min, D. and Shin, C., 2008. Frequency-domain full waveform inversion usingthe new pseudo-Hessian matrix: Experience of elastic Marmousi-2 syntheticdata. Bull. Seismol. Soc. Am., 98: 2402-2415.
  5. Chung, W., Pyun, S., Bae, H., Shin, C. and Marfurt, K.J., 2012. Implementation ofelastic reverse-time migration using wavefield separation in the frequencydomain. Geophys. J. Internat., 189: 1611-1625.
  6. Dankbaar, M., 1987. Vertical seismic profiling - separation of P- and S-waves. Geophys.Prosp., 35: 803-814.
  7. Dellinger, J. and Etgen, J.. 1990. Wave-field separation in two-dimensional anisotropicmedia. Geophysics, 55: 914-919.
  8. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversionof seismic waveforms: Numerical results. Geophysics, 51: 1387-1403.
  9. Ha. T.. Chung. W. and Shin. C.. 2009. Waveform inversion using a back-propagationalgorithm and a Huber function norm. Geophysics, 74(3): R15-R24.
  10. Ha, J., Shin, S., Shin, C. and Chung, W., 2015. Efficient elastic reverse-time migrationfor the decomposed P-wavefield using stress tensor in the time domain. J. Appl.Geophys., 116: 121-134.
  11. Jeong, W., Lee, H. and Min, D., 2012. Full waveform inversion strategy for density inthe frequency domain. Geophys. J. Internat., 188: 1221-1242.
  12. Kolb, P., Collino, F. and Lailly, P., 1986. Pre-stack inversion of a 1-D medium. Proc.IEEE, 74: 498-508.
  13. Lee. H., Koo, J.. Min, D.. Kwon, B. and Yoo, H.. 2010. Frequency-domain elastic fullwaveform inversion for VTI media. Geophys. J. Internat., 183: 884-904.
  14. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migration.
  15. Conference on Inverse Scattering, Theory and Application, Soc. Industr. Appl.Mathemat., 206-220.
  16. Martin, G.. Wiley, R. and Marfurt, K.J.. 2006. Marmousi2: An elastic upgrade forMarmousi. The Leading Edge, 25: 156-166.
  17. Mora, P.. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.Geophysics, 52: 1211-1228.
  18. Operto, S., Gholami. Y., Prieux. V., Ribodetti, A.. Brossier, R.. Metivier, L. and Virieux,
  19. J., 2013. A guided tour of multiparameter full-waveform inversion withmulticomponent data: From theory to practice. The Leading Edge, 32: 1040-
  20. Operto, S. and Miniussi, A., 2018. On the role of density and attenuation in three-dimensional multinarameter viscoacoustic VTI freauencv-domain FWI: An
  21. OBC case study from the North Sea. Geophys. J. Internat., 213: 2037-2059.
  22. Pan, W., Innanen, K.A., Yu, G. and Li, J., 2019. Interparameter trade-off quantificationfor isotropic-elastic full-waveform inversion with various modelparameterizations. Geophysics, 84(2): R185-R206.
  23. Pratt. R.G.. 1990. Inverse theorv applied to multi-source cross-hole tomography. part 2:elastic wave-equation method. Geophys. Prosp., 38: 311-329.
  24. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods infrequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-
  25. Sheen, D., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-Newtonseismic waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-
  26. Shin, C.. Yoon, K.. Marfurt, K.J.. Park, K.. Yang, D., Lim, H.Y.. Chung, S. and Shin.
  27. S.. 2001. Efficient calculation of a partial-derivative wavefield using reciprocityfor seismic imaging and inversion. Geophysics, 66: 1856-1863.
  28. Shipp, R. and Singh, S., 2002. Two-dimensional full waveform inversion of wide-aperture marine seismic streamer data. Geophys. J. Internat., 151: 325-344.
  29. Sun, R.。 1999. Separating P- and S-waves in a prestack 2-dimensional elasticseismogram. Extended Abstr., 61st EAGE Conf., Helsinki: 6-23.
  30. Tarantola, A.. 1984. Inversion of seismic reflection data in the acoustic approximation.Geophysics, 49: 1259-1266.
  31. Yan, J. and Sava, P.. 2008. Isotropic angle-domain elastic reverse-time migration.Geophysics, 73(6), S229-S239.
  32. Yan, J. and Sava, P., 2009. Elastic wave-mode separation for VTI media. Geophysics,74(5): WB19-WB32.
  33. Yan, J., 2010. Wave-mode Separation for Elastic Imaging in Transversely Isotropic
  34. Media. Ph.D. thesis, Colorado School of Mines, Golden, CO.
  35. Zhang, O. and McMechan, G.A., 2011. Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media. Geophysics,76(6): S197-S206.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing