ARTICLE

Iterative deblending based on the modified singular spectrum analysis

JUAN WU MIN BAI
Show Less
Key Laboratory of Exploration Technology for Oil and Gas Resources of the Ministry of Education, Yangtze University, Wuhan 430100, P.R. China,
JSE 2019, 28(1), 1–20;
Submitted: 18 February 2018 | Accepted: 7 October 2018 | Published: 1 February 2019
© 2019 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wu, J. and Bai, M., 2019. Iterative deblending based on the modified singular spectrum analysis. Journal of Seismic Exploration, 28: 1-20. Deblending of simultaneous-source seismic data aims at separating the blended records caused by simultaneous shooting as if the data are acquired traditionally. In this paper, we propose a novel modified singular spectrum analysis (SSA) approach to remove blending noise in an iterative inversion manner. Compared with the traditional SSA approach, the modified SSA approach applies a modified truncated singular value decomposition (TSVD) onto the Hankel matrix in the frequency domain, and can attenuate more blending noise than the traditional SSA method. We use both synthetic and field data examples to demonstrate that the proposed modified SSA method has a stronger signal-and-noise separability.

Keywords
deblending
singular value decomposition
noise
singular spectrum analysis
iterative solver
References
  1. Abma, R., 2014. Shot scheduling in simultaneous shooting. Expanded Abstr., 84th Ann.Internat. SEG Mtg., Denver: 94-98.
  2. Abma, R.L. and Yan, J., 2009. Separating simultaneous sources by inversion. ExtendedAbstr., 71st EAGE Conf., Amsterdam.
  3. Amundsen, L., Andersson, F., van Manen, D.-J., Robertsson, J.O. and Eggenberger K.,
  4. Multi-source encoding and decoding using the signal apparition technique.Geophysics, 83: V49-V59.
  5. Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correctnormal moveout - with comparison on migrated images. J. Seismic Explor., 26:455-479.
  6. Bai, M. and Wu, J., 2018. Seismic deconvolution using iteartive transform-domain sparseinversion. J. Seismic Explor., 27: 103-116.
  7. Bai, M., Wu, J., Xie, J. and Zhang, D., 2018. Least-squares reverse time migration ofblended data with low-rank constraint along structural direction. J. SeismicExplor., 27: 29-48.
  8. Beasley, C. J., 2008. A new look at marine simultaneous sources. The Leading Edge, 27:914-917.
  9. Berkhout, A.J., 2008. Changing the mindset in seismic data acquisition. The LeadingEdge, 27: 924-938.
  10. Berkhout, A.J. and Blacquiére, G., 2013. Effect of noise in blending and deblending.Geophysics, 78(5): A35-A38.
  11. Cadzow, J.A., 1988. Signal enhancement - a composite property mapping algorithm.
  12. IEEE Transact. Acoust., Speech, Sign. Process., 1: 49-62.
  13. Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using animproved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-
  14. Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improvedcomplete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-
  15. Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noiseattenuation using adaptive randomized-order empirical mode decomposition.IEEE Geosci. Remote Sens. Lett., 14: 18-22.
  16. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
  17. Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybridmethod based on ensemble empirical mode decomposition. J. Seismic Explor., 26:227-249.
  18. Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-hen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensionalseismic data. Geophys. J. Internat., 209: 21-31.
  19. Chen, Y., 2018. Non-stationary least-squares complex decomposition for microseismicnoise attenuation. Geophys. J. Internat., 213: 1572-1585.hen, Y., Chen, H., Xiang, K. and Chen, X., 2016b. Geological structure guided well loginterpolation for high-fidelity full waveform inversion. Geophys. J. Internat., 207:1313-1331.
  20. Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017e. Preserving the discontinuities inleast-squares reverse time migration of simultaneous-source data. Geophysics,82(3): S185—-S196.hen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.hen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.hen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization. Geophysics, 79(5):V179-V189.hen, Y. and Ma, J., 2014. Random noise attenuation by fx empirical modedecomposition predictive filtering. Geophysics, 79: V81—V91.hen, Y., Zhang, D., Huang, W. and Chen, W., 2016c. An open-source matlab codepackage for improved rank-reduction 3D seismic data denoising andreconstruction. Comput. Geosci., 95: 59-66.hen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016d.
  21. Simultaneous denoising and reconstruction of 5D seismic data via damped rank-reduction method. Geophys. J. Internat., 206: 1695-1717.QQCO 0Q aQ
  22. Doulgeris, P., Bube, K., Hampson, G. and Blacquiére, G., 2012. Convergence analysis ofa coherency-constrained inversion for the separation of blended data. Geophys.Prosp., 60: 769-781.
  23. Fomel, S., 2007. Shaping regularization in geophysical-estimation problems. Geophysics,72(2): R29-R36.
  24. Fomel, S., 2008. Nonlinear shapping regularization in geophysical inverse problems.
  25. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2046-2051.
  26. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-
  27. Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W. and Chen, H., 2016b. Compressivesensing for seismic data reconstruction via fast projection onto convex sets basedon seislet transform. J. Appl. Geophys., 130:194-208.
  28. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension.Comput. Geosci., 86: 46-54.
  29. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016d. Velocity analysis of simultaneous-source data using high-resolution semblance-coping with the strong noise.Geophys. J. Internat., 204: 768-779.
  30. Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
  31. Huang, W., Wang, R. and Chen, Y., 2018a. Regularized non-stationary morphologicalreconstruction algorithm for weak signal detection in micro-seismic monitoring:
  32. Methodology. Geophys. J. Internat., 213: 1189-1211.
  33. Huang, W., Wang, R., Chen, Y, Li, H. and Gan, S., 2016. Damped multichannel singularspectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-V270.
  34. Huang, W., Wang, R., Gong, X. and Chen, Y., 2018b. Iterative deblending ofsimultaneous-source seismic data with structuring median constraint. [EEE
  35. Geosci. Remote Sens. Lett., 15. doi: 10.1109/LGRS.2017.2772857.
  36. Huang, W., Wang, R., Li, H. and Chen, Y., 2017a. Unveiling the signals from extremelynoisy microseismic data for high-resolution hydraulic fracturing monitoring.Scientif. Rep., 7: 11996.
  37. Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction usingrandomized-order multichannel singular spectrum analysis. Geophysics, 82: V59-V74.
  38. Huang, W., Wang, R., Zhang, D., Zhou, Y., Yang, W. and Chen, Y., 2017c.
  39. Mathematical morphological filtering for linear noise attenuation of seismic data.Geophysics, 82: V369-V384.
  40. Huang, W., Wang, R., Zhang, M., Chen, Y. and Yu, J., 2015. Random noise attenuationfor 3D seismic data by modified multichannel singular spectrum analysis.
  41. Extended Abstr., 77th EAGE Conf., Madrid. doi: 10.3997/2214— 4609.201412830.
  42. Huang, W., Wang, R., Zu, S. and Chen, Y., 2017d. Low-frequency noise attenuation inseismic and microseismic data using mathematical morphological filtering.Geophys. J. Internat., 211: 1318-1340.
  43. Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequencynoise suppression based on mathematical morphology in microseismic monitoring.Geophysics, 81(3): V159-V167.
  44. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detectionusing multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49.
  45. Liu, W., Cao, S. and Chen, Y., 2016a. Seismic time-frequency analysis via empiricalwavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  46. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016b. One-step slope estimationfor dealiased seismic data reconstruction via iterative seislet thresholding. IEEEGeosci. Remote Sens. Lett., 13: 1462-1466.
  47. Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detectionapproach via high-resolution frequency-dependent avo inversion based onvariational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56: 2007-
  48. Mahdad, A., 2012. Deblending of Seismic Data. Ph.D. thesis, Delft University ofTechnology.
  49. Mueller, M.B., Halliday, D.F., van Manen, D.-J. and Robertsson, J.O., 2015. The benefitof encoded source sequences for simultaneous source separation. Geophysics,80(5): V133-V143.
  50. Qu, S., Zhou, H., Chen, H., Zu, S. and Zhi, L., 2014. Separation of simultaneousvibroseis data. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 4340-
  51. Qu, S., Zhou, H., Chen, Y., Yu, S., Zhang, H., Yuan, J., Yang, Y. and Qin, M., 2015. Aneffective method for reducing harmonic distortion in correlated vibroseis data.J. Appl. Geophys., 115: 120-128.
  52. Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S., Yuan, J. and Yang, Y., 2016.
  53. Deblending of simultaneous-source seismic data using fast iterative shrinkage-thresholding algorithm with firm-thresholding. Acta Geophys., 64: 1066-1092.
  54. Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionarylearning. Sign. Process., 141: 309-321.
  55. Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-driven multi-task sparse dictionary learning for noise attenuation of 3D seismicdata. Geophysics, 82(6): V385-V396.
  56. Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimalsingular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  57. Verschuur, D.J. and Berkhout, A.J., 2011. Seismic migration of blended shot records withsurface-related multiple scattering. Geophysics, 76(1): A7-A13.
  58. Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximalsplitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.Lett., 14: 1830-1834.
  59. Wu, J. and Bai, M., 2018. Incoherent dictionary learning for reducing crosstalk noise inleast-squares reverse time migration. Comput. Geosci., 114: 11-21.
  60. Wu, S., Blacquiére, G. and van Groenestijn, G.-J., 2015. Shot repetition: An alternativeapproach to blending in marine seismic. Expanded Abstr., 85th Ann. Internat.SEG Mtg., New Orleans: 48-52.
  61. Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principalcomponent analysis in weighted stacking of seismic data. IEEE Geosci. RemoteSens. Lett., 14: 1213-1217.
  62. Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation viaan iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13, 1915-1919,
  63. Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order Radon transform.J. Appl. Geophys., 139: 79-90.
  64. Yu, Z., Abma, R., Etgen, J. and Sullivan, C., 2017. Attenuation of noise and simultaneoussource interference using wavelet denoising. Geophysics, 82: V179-V 190.
  65. Zhang, D., Chen, Y., Huang, W. and Gan, S., 2016. Multi-step damped multichannelsingular spectrum analysis for simultaneous reconstruction and denoising of 3Dseismic data. J. Geophys. Engin., 13: 704-720.
  66. Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3Dseismic data. Geophysics, 82(5): V351-V367.
  67. Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an onlinesubspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.
  68. Zhou, Y., Shi, C., Chen, H., Xie, J., Wu, G. and Chen, Y., 2017. Spike-like blendingnoise attenuation using structural low-rank decomposition. IEEE Geosci. RemoteSens. Lett., 14: 1633-1637.
  69. Zu, S., Zhou, H., Chen, H., Zheng, H. and Chen, Y., 2017a. Two field trials fordeblending of simultaneous source surveys: why we failed and why we succeeded?J. Appl. Geophys., 143: 182-194.
  70. Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016a. Interpolating big gapsusing inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13: 1369-
  71. Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016b. A periodicallyvarying code for improving deblending of simultaneous sources in marineacquisition. Geophysics, 81(3): V213-V225.
  72. Zu, S., Zhou, H., Li, Q., Chen, H., Zhang, Q., Mao, W. and Chen, Y., 2017b. Shot-domain deblending using least-squares inversion. Geophysics, 82(4): V241-V256.
  73. Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017c. Iterativedeblending of simultaneous-source data using a coherency-pass shaping operator.Geophys. J. Internat., 211: 541-557.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing