Iterative sparse deconvolution using seislet-domain constraint

Bai, M., and Wu, J., 2019. Iterative sparse deconvolution using seislet-domain constraint. Journal of Seismic Exploration, 28: 73-88. Deconvolution can help improve the resolution of seismic data. We introduce a deconvolution formulation that can arbitrarily select the resolution level of the seismic data by defining a simple squeezing factor. Considering the ill-posedness of the deconvolution problem, some proper regularizations should be added when iteratively solving the deconvolution-related inverse problem. Traditionally used Fourier-domain constraint can be effective only when the seismic data contains linear events. We propose a seislet-domain constraint to regularize the deconvolution problem to deal with the curved events in seismic data. The seislet transform compressed the seismic data along structural direction, and thus can obtain the optimal sparsity. We apply the proposed method to both synthetic and field data examples and obtain encouraging performance.
- Abma, R. and Kabir, N., 2006. 3D interpolation of irregular data with a POCS algorithm.Geophysics, 71: E91-E97.
- Bai, M. and Wu, J., 2017. Effcient deblending using median filtering without correct normalmoveout - with comparison on migrated images. J. Seismic Explor., 26: 455-479.
- Bai, M. and Wu, J., 2018. Seismic deconvolution using iteartive transform-domain sparseinversion. J. Seismic Explor., 27: 103-116.
- Bai, M., Wu, J., Xie, J. and Zhang, D., 2018. Least-squares reverse time migration of blendeddata with low-rank constraint along structural direction. J. Seismic Explor, 27: 29-48.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG Mtg.,Atlanta: 525-527.
- Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using animproved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-380.
- Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improved completeensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noiseattenuation using adaptive randomized-order empirical mode decomposition. IEEEGeosci. Remote Sens. Lett., 14: 18-22.
- Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
- Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybrid method basedon ensemble empirical mode decomposition. J. Seismic Explor., 26: 227-249.
- Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptiveempirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional seismic data.Geophys. J. Internat., 209: 21-31.
- Chen, Y., 2018. Non-stationary least-squares complex decomposition for microseismic noiseattenuation. Geophys. J. Internat., 213: 1572-1585.
- Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80(6): WD1-WD9.
- Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source seismic datausing seislet-domain shaping regularization. Geophysics, 79(5): V179-V189.
- Chen, Y. and Jin, Z., 2015. Simultaneously removing noise and increasing resolution of seismicdata using waveform shaping. IEEE Geosci. Remote Sens. Lett., 13: 102-104.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode decompositionpredictive filtering. Geophysics, 79: V81-V91.
- Chen, Y., Zhang, D., Huang, W. and Chen, W., 2016b. An open-source matlab codepackage for improved rank-reduction 3D seismic data denoising and reconstruction.Comput. Geosci., 95: 59-66.
- Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016c. Simultaneousdenoising and reconstruction of 5D seismic data via damped rank-reduction method.Geophys. J. Internat., 206: 1695-1717.
- Cohen, A., Daubechies, I. and Feauveau, J.C., 1992. Biorthogonal bases of compactlysupported wavelets. Communic. Pure Appl. Mathemat., 45: 485-560.
- Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint. Comm. Pure Appl. Mathemat., 57: 1413-
- Daubechies, I., Fornasier, M. and Loris, I., 2008. Accelerated projected gradient method for linearinverse problems with sparsity constraints. J. Fourier. Analys. Applic., 14: 764-792.
- Fomel, S., 2007. Shaping regularization in geophysical-estimation problems. Geophysics, 72:R29-R36.
- Fomel, S., 2008. Nonlinear shapping regularization in geophysical inverse problems.
- Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2046-2051.
- Gan, S., Chen, Y., Zu, S., Qu, S. and Zhong, W., 2015a. Structure-oriented singular valuedecomposition for random noise attenuation of seismic data. J. Geophys. Engineer.,12:262-272.
- Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
- Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W. and Chen, H., 2016b. Compressive sensing forseismic data reconstruction via fast projection onto convex sets based on seislet transform.J. Appl. Geophys., 130: 194-208.
- Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneous sourcesusing a structural-oriented median filter in the flattened dimension. Comput. Geosci., 86:46-54.
- Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016d. Velocity analysis of simultaneoussource data using high-resolution semblance-coping with the strong noise.Geophys. J. Internat., 204: 768-779.
- Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015b. Dealiased seismic datainterpolation using seislet transform with low-frequency constraint. IEEE Geosci.Remote Sens. Lett., 12: 2150-2154.
- Huang, W., R. Wang, and Y. Chen, Y., 2018a. Regularized non-stationary morphologicalreconstruction algorithm for weak signal detection in micro-seismic monitoring:
- Methodology. Geophys. J. Internat.,, 213: 1189-1211.
- Huang, W., Wang, R., Gong, X. and Chen, Y., 2018b. Iterative deblending of simultaneoussource seismic data with structuring median constraint. IEEE Geosci. Remote Sens. Lett.,15: 58-62.
- Huang, W., Wang, R., Zu, S. and Chen, Y., 2017. Low-frequency noise attenuation in seismicand microseismic data using mathematical morphological filtering. Geophys. J. Internat.,211: 1318-1340.
- Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequency noisesuppression based on mathematical morphology in microseismic monitoring.Geophysics, 81(3): V159-V167.
- Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection usingmultiscale morphology in microseismic monitoring. J. Appl. Geophys.,133: 39-49.
- Liu, G. and Chen, X., 2013. Noncausal f-x-y regularized nonstationary prediction filtering forrandom noise attenuation on 3D seismic data. J. Appl. Geophys., 93:60-66.
- Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-x regularizednonstationary autoregression. Geophysics, 77: V61-V69.
- Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition inseismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empirical wavelettransform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
- Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detectionapproach via high-resolution frequency-dependent AVO inversion based onvariational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56: 2007-
- Liu, W., Cao, S., Liu, Y. and Chen, Y., 2016c. Synchrosqueezing transform and itsapplications in seismic data analysis. J. Seismic Explor., 25: 27-44.
- Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017. Spectral decomposition forhydrocarbon detection based on VMD and Teager-Kaiser energy. IEEE Geosci. RemoteSens. Lett., 14: 539-543.
- Liu, Y., Fomel, S., Liu, C., Wang, D., Liu, G. and Feng, X., 2009. High-order seislettransform and its application of random noise attenuation. Chin. J. Geophys., 52: 2142-
- Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising andinterpolation of 2D seismic data using data-driven non-negative dictionarylearning. Sign. Process., 141: 309-321.
- Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-drivenmulti-task sparse dictionary learning for noise attenuation of 3D seismic data.Geophysics, 82(6): V385-V396.
- Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneousdenoising and interpolation of 3D seismic data via damped data-driven optimal singularvalue shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
- Sweldens, W., 1995. Lifting scheme: A new philosophy in biorthogonal wavelet constructions.
- Wavelet applications in signal and image processing iii. Proc. SPIE 2569: 68-79.
- Wu, G., Fomel, S. and Chen, Y., 2018. Data-driven time-frequency analysis of seismic data usingnon-stationary prony method. Geophys. Prosp., 66: 85-97.
- Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuation usingshaping regularization with seislet domain sparsity constraint. J. Seismic Explor., 25: 1-9.
- Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principal componentanalysis in weighted stacking of seismic data. IEEE Geosci. Remote Sens. Lett., 14:1213-1217.
- Xue, Y., Man, M., Zu, S., Chang, F. and Chen,Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order Radon transform.J. Appl. Geophys., 139: 79-90.
- Xue, Y., Yang, J., Ma, J. and Chen, Y., 2016. Amplitude-preserving nonlinear adaptivemultiple attenuation using the high-order sparse Radon transform. J. Geophys.Engineer., 13: 207-219.
- Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015. An efficient andeffective common reflection surface stacking approach using local similarity and planewave flattening. J. Appl. Geophys., 117: 67-72.
- Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid rank-sparsityconstraint model for simultaneous reconstruction and denoising of 3D seismic data.Geophysics, 82(5): V351-V367.
- Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. L1/2 norm regularization for 3D seismic datainterpolation. J. Seismic Explor., 25: 257-268.
- Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodically varyingcode for improving deblending of simultaneous sources in marine acquisition.Geophysics, 81(3): V213-V225.
- Zu, S., Zhou, H., Li, Q., Chen, H., Zhang, Q., Mao, W. and Chen, Y., 2017a. Shot-domaindeblending using least-squares inversion. Geophysics, 82(4): V241-V256.
- Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017b. Iterativedeblending of simultaneous-source data using a coherency-pass shaping operator.Geophys. J. Internat., 211: 541-557.