An efficient attenuation compensation method using the synchrosqueezing transform

Yang, Y., Gao, J.H., Zhang, G.W. and Wang, Q., 2018. An efficient attenuation compensation method using the synchrosqueezing transform. Journal of Seismic Exploration, 27: 577-591. Attenuation of seismic waves, which decreases the amplitude and distorts the phase, also usually results in low resolution of seismic data. In this study, inverse Q filtering is introduced to compensate the attenuation of seismic waves using the synchrosqueezing transform (SST), which condenses the spectrum energy along the frequency axis and provides highly localized time-frequency representations. To perform a stable inverse Q filtering, a denoising filtering and reliable O values are needed. At first, a spare SST-domain filtering is utilized to remove the random noise based on a low-rank and spare decomposition-based method. Then, a reliable Q-factor estimation method using the peak frequency shift method in SST domain is applied in the implementation of inverse Q filtering scheme. At last, we reformulate amplitude correction as an inverse problem with a /;-norm regularization term in the SST domain to prevent the noise bursting because of the inherently unstable process of amplitude correction. Therefore, we propose a complete three-stage work flow to denoise, estimate Q factor and compensate attenuation using the SST. Tests with synthetic examples and real data demonstrate the robustness and effectiveness of this proposed method.
- Aki, K. and Richards, P.G., 2002. Quantitative Seismology, 2nd Ed.. W. H. Freeman, SanFrancisco.van der Baan, M., 2012. Bandwidth enhancement: Inverse Q filtering or time-varyingWiener deconvolution? Geophysics, 77(4). 133
- Boashash, B. and Mesbah, M., 2004. Signal enhancement by time-frequency peakfiltering. IEEE Transact. Signal Process., 52: 929-937.
- Braga, I.L.S. and Moraes, F.S., 2013. High-resolution gathers by inverse filtering in thewavelet domain. Geophysics, 78(2): V53-V62.
- Cheng, M.M., Mitra, N.J., Huang, X., Torr, P-H. and Hu, S.M., 2015. Global contrastbased salient region detection. IEEE Transact. Pattern Analys. Mach. Intellig., 37:569-582.
- Candés, E.J. and Plan, Y., 2010. Matrix completion with noise. Proc. IEEE, 98: 925-936.
- Cheng, J., Chen, K. and Sacchi, M.D., 2015. Robust principal component analysis forseismic data denoising. Abstr., GeoConvention RPCA 2015.
- Daubechies, I., Lu, J. and Wu, H.T., 2009. Synchrosqueezed wavelet transforms: a toolfor empirical mode decomposition. Mathematics, arXiv: 0912.2437.
- Daubechies, I., Lu, J. and Wu, H.T., 2011. Synchrosqueezed wavelet transforms: Anempirical mode decomposition-like tool. Appl. Computat. Harmon. Analys, 30:243-261.
- Gao, J., Yang, S., Wang, D. and Wu, R., 2011. Estimation of quality factor Q from theinstantaneous frequency at the envelope peak of a seismic signal. J. Computat.Acoust., 19: 155-179.
- Hargreaves, N.D., 2012. Inverse Q filtering by Fourier transform. Geophysics; 56(4): 519.
- Kolsky, H.L., 1956. The propagation of stress pulses in viscoelastic solids. Philosoph.Magaz., 1(8): 693-710.
- Lupinacci, W.M., de Franco, A.P., Oliveira, S.A.M. and de Moraes, F., 2016. Acombined time-frequency filtering strategy for Q-factor compensation of poststackseismic data. Geophysics, 82(1): V1-V6.
- Nazari Siahsar, M.A., Gholtashi, S., Kahoo, A.R., Marvi, H. and Ahmadifard, A., 2016.
- Sparse time-frequency representation for seismic noise reduction using low-rank andsparse decomposition. Geophysics, 81(2): V117-V24.
- Quan, Y. and Harris, J.M., 1997. Seismic attenuation tomography using the frequencyshift method. Geophysics, 62: 895-905.
- Reine, C., Clark, R. and van der Baan, M., 2012. Robust prestack Q-determination usingsurface seismic data: Part 1. Method and synthetic examples. Geophysics.
- Ricker, N., 1953. The form and laws of propagation of seismic wavelets. Geophysics, 18:10-40.
- Rosa, A.L.R., 1991. Processing via spectral modeling. Geophysics, 56: 1244-1251.
- Tary, J.B., van der Baan, M., Herrera, R.H., 2016. Applications of high-resolutiontime-frequency transforms to attenuation estimation. Geophysics, 82(1): V7-V20.
- Thakur, G., Brevdo, E., Fukar, N.S. and Wu, H.T., 2013. The synchrosqueezingalgorithm for time-varying spectral analysis: Robustness properties and newpaleoclimate applications. Signal Process., 93:1079-1094,
- Tonn, R., 1991. The determination of the seismic quality factor Q from VSP data. Acomparison of different computational methods. Geophys. Prosp., 39: 127.
- Trickett, S., 2008. F-xy cadzow noise suppression. Expanded Abstr., 78th Ann. Internat.SEG Mtg., Las Vegas: 2586-2590.
- Wang, P., Gao, J. and Wang, Z., 2014. Time-frequency analysis of seismic data usingsynchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 11: 2042-2044.
- Wang, Y., 2002. A stable and efficient approach of inverse Q filtering. Geophysics, 67:657-663.
- Wang, Y., 2004. Q analysis on reflection seismic data. Geophys. Res. Lett., 31: 159-158.
- Wang, Y., 2006. Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3):V51.
- Wang, Y., 2009. Seismic Inverse Q filtering. John Wiley & Sons., New York.
- Yang, Y., Ma, J. and Osher, S., 2013. Seismic data reconstruction via matrix completion.Inver. Probl. Imag., 7: 1379-1392.
- Yilmaz, O., 2001. Seismic Data Analysis. Vol. 1. SEG, Tulsa, OK.
- Zhang, C. and Ulrych, T.J., 2002. Estimation of quality factors from CMP records.Geophysics, 67: 1542-1547.
- Zhou, H., Tian, Y. and Ye, Y., 2014. Dynamic deconvolution of seismic data based ongeneralized S-transform. J. Appl. Geophys., 108(9): 1-11.
- Zhou, T. and Tao, D., 2011. Godec: Randomized Low-rank & Sparse Matrix
- Decomposition in Noisy Case. Internat. Conf. Mach. Learn. Omnipress, WashingtonD.C.