ARTICLE

An efficient attenuation compensation method using the synchrosqueezing transform

YANG YANG1,3 JINGHUA GAO2,3 GUOWEI ZHANG3 QIAN WANG3
JSE 2018, 27(6), 577–591;
Submitted: 4 August 2017 | Accepted: 24 September 2018 | Published: 1 December 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yang, Y., Gao, J.H., Zhang, G.W. and Wang, Q., 2018. An efficient attenuation compensation method using the synchrosqueezing transform. Journal of Seismic Exploration, 27: 577-591. Attenuation of seismic waves, which decreases the amplitude and distorts the phase, also usually results in low resolution of seismic data. In this study, inverse Q filtering is introduced to compensate the attenuation of seismic waves using the synchrosqueezing transform (SST), which condenses the spectrum energy along the frequency axis and provides highly localized time-frequency representations. To perform a stable inverse Q filtering, a denoising filtering and reliable O values are needed. At first, a spare SST-domain filtering is utilized to remove the random noise based on a low-rank and spare decomposition-based method. Then, a reliable Q-factor estimation method using the peak frequency shift method in SST domain is applied in the implementation of inverse Q filtering scheme. At last, we reformulate amplitude correction as an inverse problem with a /;-norm regularization term in the SST domain to prevent the noise bursting because of the inherently unstable process of amplitude correction. Therefore, we propose a complete three-stage work flow to denoise, estimate Q factor and compensate attenuation using the SST. Tests with synthetic examples and real data demonstrate the robustness and effectiveness of this proposed method.

Keywords
synchrosqueezing transform (SST)
denoise
Q estimation
inverse Q filtering
References
  1. Aki, K. and Richards, P.G., 2002. Quantitative Seismology, 2nd Ed.. W. H. Freeman, SanFrancisco.van der Baan, M., 2012. Bandwidth enhancement: Inverse Q filtering or time-varyingWiener deconvolution? Geophysics, 77(4). 133
  2. Boashash, B. and Mesbah, M., 2004. Signal enhancement by time-frequency peakfiltering. IEEE Transact. Signal Process., 52: 929-937.
  3. Braga, I.L.S. and Moraes, F.S., 2013. High-resolution gathers by inverse filtering in thewavelet domain. Geophysics, 78(2): V53-V62.
  4. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P-H. and Hu, S.M., 2015. Global contrastbased salient region detection. IEEE Transact. Pattern Analys. Mach. Intellig., 37:569-582.
  5. Candés, E.J. and Plan, Y., 2010. Matrix completion with noise. Proc. IEEE, 98: 925-936.
  6. Cheng, J., Chen, K. and Sacchi, M.D., 2015. Robust principal component analysis forseismic data denoising. Abstr., GeoConvention RPCA 2015.
  7. Daubechies, I., Lu, J. and Wu, H.T., 2009. Synchrosqueezed wavelet transforms: a toolfor empirical mode decomposition. Mathematics, arXiv: 0912.2437.
  8. Daubechies, I., Lu, J. and Wu, H.T., 2011. Synchrosqueezed wavelet transforms: Anempirical mode decomposition-like tool. Appl. Computat. Harmon. Analys, 30:243-261.
  9. Gao, J., Yang, S., Wang, D. and Wu, R., 2011. Estimation of quality factor Q from theinstantaneous frequency at the envelope peak of a seismic signal. J. Computat.Acoust., 19: 155-179.
  10. Hargreaves, N.D., 2012. Inverse Q filtering by Fourier transform. Geophysics; 56(4): 519.
  11. Kolsky, H.L., 1956. The propagation of stress pulses in viscoelastic solids. Philosoph.Magaz., 1(8): 693-710.
  12. Lupinacci, W.M., de Franco, A.P., Oliveira, S.A.M. and de Moraes, F., 2016. Acombined time-frequency filtering strategy for Q-factor compensation of poststackseismic data. Geophysics, 82(1): V1-V6.
  13. Nazari Siahsar, M.A., Gholtashi, S., Kahoo, A.R., Marvi, H. and Ahmadifard, A., 2016.
  14. Sparse time-frequency representation for seismic noise reduction using low-rank andsparse decomposition. Geophysics, 81(2): V117-V24.
  15. Quan, Y. and Harris, J.M., 1997. Seismic attenuation tomography using the frequencyshift method. Geophysics, 62: 895-905.
  16. Reine, C., Clark, R. and van der Baan, M., 2012. Robust prestack Q-determination usingsurface seismic data: Part 1. Method and synthetic examples. Geophysics.
  17. Ricker, N., 1953. The form and laws of propagation of seismic wavelets. Geophysics, 18:10-40.
  18. Rosa, A.L.R., 1991. Processing via spectral modeling. Geophysics, 56: 1244-1251.
  19. Tary, J.B., van der Baan, M., Herrera, R.H., 2016. Applications of high-resolutiontime-frequency transforms to attenuation estimation. Geophysics, 82(1): V7-V20.
  20. Thakur, G., Brevdo, E., Fukar, N.S. and Wu, H.T., 2013. The synchrosqueezingalgorithm for time-varying spectral analysis: Robustness properties and newpaleoclimate applications. Signal Process., 93:1079-1094,
  21. Tonn, R., 1991. The determination of the seismic quality factor Q from VSP data. Acomparison of different computational methods. Geophys. Prosp., 39: 127.
  22. Trickett, S., 2008. F-xy cadzow noise suppression. Expanded Abstr., 78th Ann. Internat.SEG Mtg., Las Vegas: 2586-2590.
  23. Wang, P., Gao, J. and Wang, Z., 2014. Time-frequency analysis of seismic data usingsynchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 11: 2042-2044.
  24. Wang, Y., 2002. A stable and efficient approach of inverse Q filtering. Geophysics, 67:657-663.
  25. Wang, Y., 2004. Q analysis on reflection seismic data. Geophys. Res. Lett., 31: 159-158.
  26. Wang, Y., 2006. Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3):V51.
  27. Wang, Y., 2009. Seismic Inverse Q filtering. John Wiley & Sons., New York.
  28. Yang, Y., Ma, J. and Osher, S., 2013. Seismic data reconstruction via matrix completion.Inver. Probl. Imag., 7: 1379-1392.
  29. Yilmaz, O., 2001. Seismic Data Analysis. Vol. 1. SEG, Tulsa, OK.
  30. Zhang, C. and Ulrych, T.J., 2002. Estimation of quality factors from CMP records.Geophysics, 67: 1542-1547.
  31. Zhou, H., Tian, Y. and Ye, Y., 2014. Dynamic deconvolution of seismic data based ongeneralized S-transform. J. Appl. Geophys., 108(9): 1-11.
  32. Zhou, T. and Tao, D., 2011. Godec: Randomized Low-rank & Sparse Matrix
  33. Decomposition in Noisy Case. Internat. Conf. Mach. Learn. Omnipress, WashingtonD.C.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing