ARTICLE

High-order sparse Radon transform for deblending of simultaneous source seismic data

MIN WANG YARU XUE
Show Less
China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, Beijing 102249, P.R. China.,
JSE 2018, 27(2), 167–181;
Submitted: 27 July 2017 | Accepted: 15 January 2018 | Published: 1 April 2018
© 2018 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, M. and Xue, Y., 2018. High-order sparse Radon transform for deblending of simultaneous source seismic data. Journal of Seismic Exploration, 27: 167-181. This paper proposes an iterative high-order Radon transform based on matching pursuit (MP) algorithm to separate the blended seismic data. During each iteration, the matched subspace is picked by energy distribution in the high-order Radon domain. In thus small subspace, the high-order Radon transform is realized quickly to estimate the effective signals. The blending noise is then estimated by the estimate-deblended data with prior acquisition code and subtracted from the pseudo-deblended data. Thus an iteration is finished. The MP method shows more sparse than the iterative reweight least square method (IRLS). We compared the denoising effectiveness between these two methods. Synthetic and field data experiments prove that the matching pursuit algorithm has higher SNR and better denoising effectiveness than IRLS method.

Keywords
high-order Radon transform
matching pursuit algorithm
sparse constraint
simultaneous source acquisition
References
  1. Aaron, P., van Borselen, R. and Fromyr, E., 2009. Simultaneous sources: a controlledexperiment on different source configurations. Expanded. Abstr., 79th Ann.Internat. SEG Mtg., Houston: 1177-1181.
  2. Abma, R., 2014. Shot scheduling in simultaneous shooting. Expanded Abstr., 84th Ann.Internat. SEG Mtg., Denver: 94-98.
  3. Abma, R.L., Manning, T., Tanis, M., Yu, J. and Foster, M., 2010. High-quality separationof simultaneous sources by sparse inversion. Extended Abstr., 72nd EAGE Conf.,Barcelona: B003.
  4. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017. Preparing the initial model for iterativedeblending by median filtering. J. Seismic Explor., 26: 25-47.
  5. Chen, Y., 2014. Deblending using a space-varying median filter. Explor. Geophys., 46:
  6. Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80: WD1-WD9.
  7. Chen, Y., Fomel, S. and Hu, J., 2013. Iterative deblending of simultaneous-sourceseismic data using shaping regularization. Expanded Abstr., 83rd Ann. Internat.SEG Mtg., Houston: 119-125.
  8. Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-sourceseismic data using seislet-domain shaping regularization. Geophysics, 79:V179-V189.
  9. Doulgeris, P., Mahdad, A. and Blacquiére, G., 2010. Separation of blended data byiterative estimation and subtraction of interference noise. Geophysics, 76: 44-53.
  10. Ebrahimi, S., Kahoo, A.R., Chen, Y. and Porsani, M.J., 2017. A high-resolution weighted
  11. AB semblance foe dealing with amplitude-variation-with-offset phenomenon.Geophysics, 82(2): V85-V93.
  12. Gan, S., Wang, S., Chen, Y. and Chen, X., 2015b. Deblending of distance separatedsimultaneous-source data using seislet frames in the shot domain. Expanded Abstr.,85th Ann. Internat. SEG Mtg., New Orleans: 65-70.
  13. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016b. Simultaneous-source separation usingiterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
  14. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneoussources using a structural-oriented median filter in the flattened dimension. Comput.Geosci., 86: 46-54.
  15. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016d. Velocity analysis of simultaneous-source data using high-resolution semblance-coping with the strong noise. Geophys.J. Internat., 204: 768-779.
  16. Hampson, G., Stefani, J. and Herkenhoff, F., 2008. Acquisition using simultaneoussources. The Leading Edge, 27: 16.
  17. Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016a. Damped multichannelsingular spectrum analysis for 3D random noise attenuation. Geophysics, 81:V261-V270.
  18. Huo, S., Luo, Y. and Kelamis, P.G., 2012. Simultaneous sources separation viamultidirectional vector-median filtering. Geophysics, 77: V123-V131.
  19. Johansen, T.A., Bruland, L. and Lutro, J., 1995. Tracking the amplitude versus offset byusing orthogonal polynomials. Geophys. Prosp., 245-261.
  20. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detectionusing multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:39-49,
  21. Mahdad, A., 2012. Deblending of Seismic Data. Ph.D. thesis, Delft University ofTechnology.
  22. Moerig, R., Barr, F.J. and Nyland, D.L., 2013. Simultaneous shooting using cascadedsweeps. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 74.
  23. Panagiotis, D., Kenneth, B., Gary, H. and Gerrit, B., 2012. Convergence analysis of acoherency-constrained inversion for the separation of blended data. Geophys.Prospect., 60: 769-781.
  24. Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S. and Yuan, Y., 2016. Deblending ofsimultaneous-source seismic data using fast iterative shrinkage-thresholdingalgorithm with firm-thresholding. Acta Geophys., 64: 1064-1092.
  25. Sacchi, M.D. and Ulrych, T.J., 1995. High-resolution velocity gathers and offset spacereconstruction . Geophysics, 60: 1169-1177.
  26. Trad, D., Sacchi, M.D. and Ulrych, T.J., 2001. A hybrid linear-hyperbolic Radontransform. J. Seismic Explor., 9: 303-318.
  27. Wu, J., Wang, R., Chen, Y., Zhang, Y., Gan, S. and Zhou, C., 2016. Multiples attenuationusing shaping regularization with seislet domain sparsity constraint. J. SeismicExplor., 25: 1-9.
  28. Xue, Y., Ma, J. and Chen, X., 2013. High-order high-resolution Radon transform for
  29. AVO-preservation multiples attenuation. J. Seismic Explor., 22: 93-104.
  30. Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterativedeblending of simultaneous source seismic data using high-order Radon transform.J. Appl. Geophys., 139: 79-90.
  31. Xue, Z., Chen, Y., Fomel, S. and Sun, J., 2016b. Seismic imaging of incomplete data andsimultaneous-source data using least-squares reverse time migration with shapingregularization. Geophysics, 81: -S20.
  32. Yang, W., Wang, R., Wu, J., Chen, Y., Gan, S. and Zhong, W., 2015b. An efficient andefficient common reflection surface stacking approach using local similarity andplane-wave flattening. J. Appl. Geophys., 117: 67-72.
  33. Zhang, Q., Abma, R. and Ahmed, I., 2013. A marine node simultaneous sourceacquisition trial at atlantis, gulf of mexico. Expanded Abstr., 83rd Ann. Internat.SEG Mtg., Houston: 99-103.
  34. Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016c. Interpolating big gapsusing inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13:1369-1373.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing