ARTICLE

Improving the imaging resolution of 3D PSTM in VTI media using optimal summation within the Fresnel zone

HAO ZHANG1 JIANGJIE ZHANG1 ZHENGWEI LI1 JIANFENG ZHANG1 JIANG XIAO2
Show Less
1 Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China. zhanghao@mail.iggcas.ac.cn,
2 Geophysical Research Institute, BGP Inc., China National Petroleum Corporation, Korla, Xinjiang 841001, P.R. China.,
JSE 2017, 26(4), 311–330;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, H., Zhang, J., Li, Z., Zhang, J. and Xiao, J., 2017. Improving the imaging resolution of 3D PSTM in VTI media using optimal summation within the Fresnel zone. Journal of Seismic Exploration, 26: 311-330. We improve the amplitude-preserved PSTM in 3D VTI media by introducing a stationary-phase implementation in dip-angle domain so as to achieve optimal summation within Fresnel zone. The previous proposed amplitude-preserved PSTM scheme in 3D VTI media has been proven effective to produce fine image and gathers for hydrocarbon and fluid detection. However, due to the application of a relatively simple migration aperture, this migration scheme may suffer from migration noise and degrade the resolution gained. The proposed implementation in this paper can improve the 3D VTI PSTM by smearing each time sample only along the Fresnel zone rather than along the whole migration aperture, thus suppressing the noises on 3D VTI PSTM result. The Fresnel zone range is defined by picking up dip angles on dip-angle gathers generated from VTI PSTM scheme thus noises outside the Fresnel zones are suppressed in the migration process. The proposed stationary-phase VTI PSTM could effectively solve the problem of low signal-to-noise ratios in migrated images, especially in the presence of steeply dipping structures. We apply the so-called stationary-phase amplitude-preserved VTI PSTM to a field data. An improved imaging result is obtained.

Keywords
stationary-phase
pre-stack time migration
Fresnel zone
noise suppression
References
  1. Alkhalifah, T. and Tsvankin, I., 1995. Velocity analysis for transversely isotropic media.
  2. Geophysics, 60: 1550-1566.
  3. Bleistein, N., 1984. Mathematical Methods for Wave Phenomena. Academic Press, Inc., New York.
  4. Buske, S., Gutjahr, S. and Sick, C., 2009. Fresnel volume migration of single-component seismic
  5. data. Geophysics, 74(6): WCA47.
  6. Chen, J., 2004. Specular ray parameter extraction and stationary-phase migration. Geophysics, 69:
  7. 249-256.
  8. Claerbout, J.F., 1985. Imaging the Earth’s Interior. Blackwell Scientific Publications, New York.
  9. Deng, F. and McMechan, G.A., 2007. True-amplitude prestack depth migration. Geophysics, 72:
  10. S155-S166.
  11. Docherty, P., 1991. A brief comparison of some Kirchhoff integral formulas for migration and
  12. inversion. Geophysics, 56: 1164-1169.
  13. Gazdag, J., 1978. Wave-equation migration with the phase shift method. Geophysics, 43: 1342-
  14. Giboli, M., Baina, R. and Landa, E., 2013. Depth migration in the offset-aperture domain: optimal
  15. summation. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 3866-3871.
  16. Klokov, A. and Fomel, S., 2012a. Optimal migration aperture for conflicting dips. Expanded Abstr.,
  17. 82nd Ann. Internat. SEG Mtg., Las Vegas: 2012-0504.
  18. Klokov, A. and Fomel, S., 2012b. Separation and imaging of seismic diffractions using migrated
  19. dip-angle gathers. Geophysics, 77: $131-S143.
  20. Landa, E., Fomel, S. and Reshef, M., 2008. Separation, imaging, and velocity analysis of seismic
  21. diffractions using migrated dip-angle gathers. Expanded Abstr., 78th Ann. Internat. SEG
  22. Mtg., Las Vegas: 2176-2180.
  23. Marfurt, K.J., 2006. Robust estimates of 3D reflector dip and azimuth. Geophysics, 71: P29-P40.
  24. Okoye, P.N. and Uren, N.F., 1992. Spatial resolution in anisotropic media. Explor. Geophys. 23:
  25. 255-260.
  26. Schleicher, J., Hubral, P., Tygel, M. and Jaya, M.S., 1997. Minimum apertures and Fresnel zones
  27. in migration and demigration. Geophysics, 62: 183-194.
  28. Sun, H. and Schuster, G.T., 2001. 2-D wavepath migration. Geophysics, 66: 1528-1537.
  29. Sun, J., 1998. On the limited aperture migration in two dimensions. Geophysics, 63: 984-994.
  30. Sun, J. 1999. On the aperture effect in 3D Kirchhoff-type migration. Geophys. Prosp., 47:
  31. 1045-1076.
  32. Tillmanns, M. and Gebrande, H., 1999. Focusing in prestack isochrone migration using
  33. instantaneous slowness information. Pure Appl. Geophys., 156: 187-206.
  34. Tsvankin, I., 1996. P-wave signature and notation for transversely isotropic media: an overview.
  35. Geophysics, 61: 467-483.
  36. Yu, Z., Etgen, J., Whitcombe, D., Hodgson, L. and Liu, H., 2013. Dip-adaptive operator
  37. anti-aliasing for Kirchhoff migration. Expanded Abstr., 83rd Ann. Internat. SEG Mtg.,
  38. Houston: 3692-3695.
  39. Zhang, J. and Zhang, J., 2012. Amplitude-preserved pre-stack time migration in 3D VTI media.
  40. Explor. Geophys., 43: 171-177.
  41. Zhang, J.F., Li, Z.W., Liu, L.N., Wang, J. and Xu, J.C., 2016. High-resolution imaging: An
  42. approach by incorporating stationary-phase implementation into deabsorption prestack time
  43. migration. Geophysics, 81(5): $317-S331.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing