Seismic time-frequency analysis using an improved empirical mode decomposition algorithm

Chen, W., Chen, Y. and Cheng, Z., 2017. Seismic time-frequency analysis using an improved empirical mode decomposition algorithm. Journal of Seismic Exploration, 26: 367-380. Among the time-frequency analysis approaches, the EMD-based approaches have been proven to show higher spectral-spatial resolution than the traditional approaches. However, the mode mixing problem always exists in these approaches which will affect the subsequent interpretation performance. In this paper, we apply a novel improved complete ensemble empirical mode decomposition (ICEEMD) technique to time-frequency analysis of seismic data. The ICEEMD approach can help decompose a 1D non-stationary signal into intrinsic mode functions with less noise and more physical meaning, and result in a higher frequency resolution in the time-frequency maps. The application of the algorithm to 1D seismic signal can help obtain a more meaningful analysis regarding the non-stationary components. Its application to 2D and 3D seismic data has the potential to enable a better geological and geophysical interpretation. We use a 1D real seismic trace, a 2D seismic section and a 3D seismic cube to show the superior performance of the proposed approach.
- Allen, J.B., 1977. Short term spectral analysis, synthetic and modification by discrete fouriertransform. IEEE Trans. Acoust. Speech Signal Process., 25: 235-238.
- Cai, H., He, Z. and Huang, D., 2011. Seismic data denoising based on mixed time-frequencymethods. Appl. Geophys., 8: 319-327.
- Chakraborty, A. and Okaya, D., 1995. Frequency-time decomposition of seismic data usingwavelet-based methods. Geophysics, 60: 1906-1916.
- Chen, W., Chen, Y. and Liu, W., 2016. Ground roll attenuation using improved complete ensembleempirical mode decomposition. J. Seismic Explor., 25: 485-495.
- Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017a. Multiple reflections noise attenuationusing adaptive randomized-order empirical mode decomposition. IEEE Geosci. Remote Sens.Lett., 14: 18-22.
- Chen, W., Zhang, D. and Chen, Y., 2017b. Random noise reduction using a hybrid method basedon ensemble empirical mode decomposition. J. Seismic Explor., 26: 25-47.
- Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptive empiricalmode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
- Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noiseorthogonalization. Geophysics, 80: WD1-WD9.
- Chen, Y. and Jin, Z., 2016. Simultaneously removing noise and increasing resolution of seismic datausing waveform shaping. IEEE Geosci. Remote Sens. Lett., 13: 102-104.
- Chen, Y., Liu, T., Chen, X., Li, J. and Wang, E., 2014a. Time-frequency analysis of seismic datausing synchrosqueezing wavelet transform. J. Seismic Explor., 23: 303-312.
- Chen, Y., Zhou, C., Yuan, J. and Jin, Z., 2014b. Application of empirical mode decomposition torandom noise attenuation of seismic data. J. Seismic Explor., 23: 481-495.
- Cohen, L., 1995. Time-frequency Analysis. Prentice Hall, Inc., New York.
- Colominas, M.A., Schlotthauer, G. and Torres, M.E., 2014. Improve complete ensemble emd: Asuitable tool for biomedical signal processing. Biomed. Signal Process. Contr., 14: 19-29.
- Colominas, M.A., Schlotthauer, G., Torres, M.E. and Flandrin, P., 2012. Noise-assisted emdmethods in action. Adv. Adapt. Data Anal., 4: 1250025.
- Daubechies, I., Lu, J. and Wu, H.-T., 2011. Synchrosqueezed wavelet transforms: An empiricalmode decomposition-like tool. Appl. Computat. Harmon. Analys., 30: 243-261.
- Daubechies, I. and Maes, S., 1996. A nonlinear squeezing of the continuous wavelet transformbased on auditory nerve models wavelets in medicine and biology. CRC Press, Boca Raton:527-546.
- Fomel, S., 2010. Predictive painting of 3-D seismic volumes. Geophysics, 75: A25-A30.
- Fomel, S., 2013. Seismic data decomposition into spectral components using regularizednonstationary autoregression. Geophysics, 78: 069-076.
- Gan, S., Wang, S., Chen, Y., Chen, J., Zhong, W. and Zhang, C., 2016. Improved random noiseattenuation using fx empirical mode decomposition and local similarity. Appl. Geophys. 13:127-134.TIME-FREQUENCY ANALYSIS VIA ICEEMD 379
- Han, J. and van der Baan, M., 2013. Empirical mode decomposition for seismic time-frequencyanalysis. Geophysics, 78: 09-019.
- Han, J. and van der Baan, M., 2015. Microseismic and seismic denoising via ensemble empiricalmode decomposition and adaptive thresholding. Geophysics, 80: KS69-KS80.
- Herrer, R.H., Han, J. and van der Baan, M., 2014. Applications of the synchrosqueezing transformin seismic time-frequency analysis. Geophysics, 79: V55-V64.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C.and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum fornonlinear and non-stationary time series analysis. Proc. Roy. Soc. London Series A, 454:903-995.
- Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel singularspectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-V270
- Jeffrey, C., and William, J., 1999. On the existence of discrete Wigner distributions. IEEE SignalProc. Lett., 6: 304-306.
- Kong, D., Peng, Z., He, Y. and Fan, H., 2016. Seismic random noise attenuation using directionaltotal variation in the shearlet domain. J. Seismic Explor., 25: 321-338.
- Kopecky, M., 2010. Ensemble empirical mode decomposition: Image data analysis with white-noisereflection. Acta Polytechn., 50: 49-56.
- Lin, H., Li, Y., Ma, H., Yang, B. and Dai, J., 2015. Matching-pursuit-based spatial-tracetime-frequency peak filtering for seismic random noise attenuation. IEEE Geosci. RemoteSens. Lett., 12: 394-398.
- Liu, C., Wang, D., Hu, B. and Wang, T., 2016a. Seismic deconvolution with shearlet sparsityconstrained inversion. J. Seismic Explor., 25: 433-445.
- Liu, G., Fomel, S. and Chen, X., 2011. Time-frequency analysis of seismic data using localattributes. Geophysics, 76: P23-P34.Lin a380 CHEN, CHEN & CHENG
- Wu, X., Uden, R. and Chapman, M., 2016b. Shale anisotropic elastic modeling and seismicreflections. J. Seismic Explor., 25: 419-432.
- Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A noise-assisted dataanalysis method. Advanc. Adapt. Data Analys., 1: 1-41.
- Xie, Q., Chen, Y., Zhang, G., Gan, S. and Wang, E., 2015. Seismic data analysis usingsynchrosqueezeing wavelet transform - a case study applied to boonsville field. ExtendedAbstr., 77th EAGE Conf., Madrid.doi: 10.3997/2214-4609.201412752.
- Zhang, Q., Chen, Y., Guan, H. and Wen, J., 2016. Well-log constrained inversion for lithologycharacterization: a case study at the jz25-1 oil field, China. J. Seismic Explor., 25: 121-129.
- Zhang, X., Han, L., Wang, Y. and Shan, G., 2010. Seismic spectral decomposition fast matchingpursuit algorithm and its application. Geophys. Prosp. Petrol., 49: 1-6.
- Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. Li norm regularization for 3D seismic datainterpolation. J. Seismic Explor., 25: 257-268.