ARTICLE

Seismic time-frequency analysis using an improved empirical mode decomposition algorithm

WEI CHEN1,2,3 YANGKANG CHEN4 ZIXIANG CHENG5
Show Less
1 Key Laboratory of Exploration Technology for Oil and Gas Resources of the Ministry of Education, Yangtze University, Wuhan Hubei 430100, P.R. China.,
2 Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan Hubei 430100, P.R. China.,
3 State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, P.R. China.,
4 Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, TX 78713-8924, U.S.A.,
5 School of Engineering, University of Southern California, Los Angeles, CA 90007, U.S.A.,
JSE 2017, 26(4), 367–380;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, W., Chen, Y. and Cheng, Z., 2017. Seismic time-frequency analysis using an improved empirical mode decomposition algorithm. Journal of Seismic Exploration, 26: 367-380. Among the time-frequency analysis approaches, the EMD-based approaches have been proven to show higher spectral-spatial resolution than the traditional approaches. However, the mode mixing problem always exists in these approaches which will affect the subsequent interpretation performance. In this paper, we apply a novel improved complete ensemble empirical mode decomposition (ICEEMD) technique to time-frequency analysis of seismic data. The ICEEMD approach can help decompose a 1D non-stationary signal into intrinsic mode functions with less noise and more physical meaning, and result in a higher frequency resolution in the time-frequency maps. The application of the algorithm to 1D seismic signal can help obtain a more meaningful analysis regarding the non-stationary components. Its application to 2D and 3D seismic data has the potential to enable a better geological and geophysical interpretation. We use a 1D real seismic trace, a 2D seismic section and a 3D seismic cube to show the superior performance of the proposed approach.

Keywords
Empirical Mode Decomposition (EMD)
time-frequency analysis
seismic data
Improved Complete Ensemble Empirical Mode Decomposition (ICEEMD)
subsurface characterization.
References
  1. Allen, J.B., 1977. Short term spectral analysis, synthetic and modification by discrete fourier
  2. transform. IEEE Trans. Acoust. Speech Signal Process., 25: 235-238.
  3. Cai, H., He, Z. and Huang, D., 2011. Seismic data denoising based on mixed time-frequency
  4. methods. Appl. Geophys., 8: 319-327.
  5. Chakraborty, A. and Okaya, D., 1995. Frequency-time decomposition of seismic data using
  6. wavelet-based methods. Geophysics, 60: 1906-1916.
  7. Chen, W., Chen, Y. and Liu, W., 2016. Ground roll attenuation using improved complete ensemble
  8. empirical mode decomposition. J. Seismic Explor., 25: 485-495.
  9. Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017a. Multiple reflections noise attenuation
  10. using adaptive randomized-order empirical mode decomposition. IEEE Geosci. Remote Sens.
  11. Lett., 14: 18-22.
  12. Chen, W., Zhang, D. and Chen, Y., 2017b. Random noise reduction using a hybrid method based
  13. on ensemble empirical mode decomposition. J. Seismic Explor., 26: 25-47.
  14. Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptive empirical
  15. mode decomposition based dip filter. Geophys. J. Internat., 206: 457-469.
  16. Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noise
  17. orthogonalization. Geophysics, 80: WD1-WD9.
  18. Chen, Y. and Jin, Z., 2016. Simultaneously removing noise and increasing resolution of seismic data
  19. using waveform shaping. IEEE Geosci. Remote Sens. Lett., 13: 102-104.
  20. Chen, Y., Liu, T., Chen, X., Li, J. and Wang, E., 2014a. Time-frequency analysis of seismic data
  21. using synchrosqueezing wavelet transform. J. Seismic Explor., 23: 303-312.
  22. Chen, Y., Zhou, C., Yuan, J. and Jin, Z., 2014b. Application of empirical mode decomposition to
  23. random noise attenuation of seismic data. J. Seismic Explor., 23: 481-495.
  24. Cohen, L., 1995. Time-frequency Analysis. Prentice Hall, Inc., New York.
  25. Colominas, M.A., Schlotthauer, G. and Torres, M.E., 2014. Improve complete ensemble emd: A
  26. suitable tool for biomedical signal processing. Biomed. Signal Process. Contr., 14: 19-29.
  27. Colominas, M.A., Schlotthauer, G., Torres, M.E. and Flandrin, P., 2012. Noise-assisted emd
  28. methods in action. Adv. Adapt. Data Anal., 4: 1250025.
  29. Daubechies, I., Lu, J. and Wu, H.-T., 2011. Synchrosqueezed wavelet transforms: An empirical
  30. mode decomposition-like tool. Appl. Computat. Harmon. Analys., 30: 243-261.
  31. Daubechies, I. and Maes, S., 1996. A nonlinear squeezing of the continuous wavelet transform
  32. based on auditory nerve models wavelets in medicine and biology. CRC Press, Boca Raton:
  33. 527-546.
  34. Fomel, S., 2010. Predictive painting of 3-D seismic volumes. Geophysics, 75: A25-A30.
  35. Fomel, S., 2013. Seismic data decomposition into spectral components using regularized
  36. nonstationary autoregression. Geophysics, 78: 069-076.
  37. Gan, S., Wang, S., Chen, Y., Chen, J., Zhong, W. and Zhang, C., 2016. Improved random noise
  38. attenuation using fx empirical mode decomposition and local similarity. Appl. Geophys. 13:
  39. 127-134.
  40. TIME-FREQUENCY ANALYSIS VIA ICEEMD 379
  41. Han, J. and van der Baan, M., 2013. Empirical mode decomposition for seismic time-frequency
  42. analysis. Geophysics, 78: 09-019.
  43. Han, J. and van der Baan, M., 2015. Microseismic and seismic denoising via ensemble empirical
  44. mode decomposition and adaptive thresholding. Geophysics, 80: KS69-KS80.
  45. Herrer, R.H., Han, J. and van der Baan, M., 2014. Applications of the synchrosqueezing transform
  46. in seismic time-frequency analysis. Geophysics, 79: V55-V64.
  47. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C.
  48. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for
  49. nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London Series A, 454:
  50. 903-995.
  51. Huang, W., Wang, R., Chen, Y., Li, H. and Gan, S., 2016. Damped multichannel singular
  52. spectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-V270
  53. Jeffrey, C., and William, J., 1999. On the existence of discrete Wigner distributions. IEEE Signal
  54. Proc. Lett., 6: 304-306.
  55. Kong, D., Peng, Z., He, Y. and Fan, H., 2016. Seismic random noise attenuation using directional
  56. total variation in the shearlet domain. J. Seismic Explor., 25: 321-338.
  57. Kopecky, M., 2010. Ensemble empirical mode decomposition: Image data analysis with white-noise
  58. reflection. Acta Polytechn., 50: 49-56.
  59. Lin, H., Li, Y., Ma, H., Yang, B. and Dai, J., 2015. Matching-pursuit-based spatial-trace
  60. time-frequency peak filtering for seismic random noise attenuation. IEEE Geosci. Remote
  61. Sens. Lett., 12: 394-398.
  62. Liu, C., Wang, D., Hu, B. and Wang, T., 2016a. Seismic deconvolution with shearlet sparsity
  63. constrained inversion. J. Seismic Explor., 25: 433-445.
  64. Liu, G., Fomel, S. and Chen, X., 2011. Time-frequency analysis of seismic data using local
  65. attributes. Geophysics, 76: P23-P34.
  66. Lin a
  67. 380 CHEN, CHEN & CHENG
  68. Wu, X., Uden, R. and Chapman, M., 2016b. Shale anisotropic elastic modeling and seismic
  69. reflections. J. Seismic Explor., 25: 419-432.
  70. Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A noise-assisted data
  71. analysis method. Advanc. Adapt. Data Analys., 1: 1-41.
  72. Xie, Q., Chen, Y., Zhang, G., Gan, S. and Wang, E., 2015. Seismic data analysis using
  73. synchrosqueezeing wavelet transform - a case study applied to boonsville field. Extended
  74. Abstr., 77th EAGE Conf., Madrid.
  75. doi: 10.3997/2214-4609.201412752.
  76. Zhang, Q., Chen, Y., Guan, H. and Wen, J., 2016. Well-log constrained inversion for lithology
  77. characterization: a case study at the jz25-1 oil field, China. J. Seismic Explor., 25: 121-129.
  78. Zhang, X., Han, L., Wang, Y. and Shan, G., 2010. Seismic spectral decomposition fast matching
  79. pursuit algorithm and its application. Geophys. Prosp. Petrol., 49: 1-6.
  80. Zhong, W., Chen, Y., Gan, S. and Yuan, J., 2016. Li norm regularization for 3D seismic data
  81. interpolation. J. Seismic Explor., 25: 257-268.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing