ARTICLE

Multiple-transient surface wave phase velocity analysis in expanded f-k domain and its application

HONGYAN SHEN1,2 CHEN CHEN2 YUEYING YAN1 BAOWEI ZHANG3
Show Less
2 Mewbourne College of Earth and Energy, University of Oklahoma, Norman, OK 73019, U.S.A.,
3 Langfang Geophysical and Geochemical Exploration Institute, Langfang, Hebei 065000, P.R. China.,
JSE 2016, 25(4), 299–319;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Shen, H., Chen, C., Yan, Y. and Zhang, B., 2016. Multiple-transient surface wave phase velocity analysis in expanded f-k domain and its application. Journal of Seismic Exploration, 25: 299-319. Surface waves are usually regarded as noise in traditional reflection seismic processing. However, useful and important signals can be extracted from surface waves since it still carries geological information. In this paper, we developed a new method of multiple-transient surface wave phase velocity analysis, which is based on 2D Fourier Transform theory. We established the equation of surface wave velocity analysis in expanded f-k domain to demonstrate the relationship among frequency, wave number, phase velocity, wavelength, and penetration depth. It is more convenient to obtain a relevant velocity spectrum by converting f-k spectrum into the depth-phase velocity (H-vg) spectrum. We obtained better results by extracting the phase velocity and depth information from the H-vg spectrum. This has the ability to extract the near-surface geological information with high accuracy and strong capabilities of de-noising. We used the new method to test an actual dataset for detecting active faults. The study shows that Rayleigh wave phase velocity has the ability to delineate structures in the near surface, about 150 m deep, which is very useful to deal with geological structures in Quaternary geology, such as bedrock fractures. The geological structures interpreted from the Rayleigh wave phase velocity profile and reflection seismic cross-section show a strong consistency.

Keywords
surface waves
reflection seismic
2D Fourier transform
phase velocity analysis
dispersion curve
near-surface structure
References
  1. Abbiss, C.P., 1981. Shear wave measurements of the elasticity of the ground. Geotechnique, 31:
  2. 91-104. doi: 10.1680/geot.1981.31.1.91.
  3. Boiero, D., Wiarda, E. and Vermeer, P., 2013. Surface- and guided-wave inversion for near-surface
  4. modeling in land and shallow marine seismic data. The Leading Edge, 32: 638-646.
  5. doi: 10. 1190/tle32060638. 1.
  6. Chen, X. and Sun, J., 2006. An improved equivalent homogenous half-space method and reverse
  7. fitting analysis of Rayleigh wave dispersion curve. Chin. J. Geophys., 49: 569-576.
  8. Chow, J., Angelier, J., Hua, J.J., Lee, J.C. and Sun, R., 2001. Paleoseismic event and active
  9. faulting: from ground penetrating radar and high-resolution seismic reflection profiles across
  10. the Chihshang Fault, eastern Taiwan. Tectonophysics, 333: 241-259.
  11. doi: 10. 1016/S0040-1951(00)00277-8.
  12. 316 SHEN, CHEN, YAN & ZHANG
  13. Gabriels, P., Snieder, R. and Nolet, G., 1987. In situ measurements of shear-wave velocity in
  14. sediments with higher-mode Rayleigh wave. Geophys. Prosp., 35: 187-196. doi:
  15. 1111/j. 1365-2478. 1987.tb00812.x.
  16. Gucunski, N. and Woods, R., 1992. Numerical simulation of the SASW test. Soil Dynam. Earthq.
  17. Engin., 11: 213-227. doi:10.1016/0267-7261(92) 90036-D.
  18. Haskell, N.A., 1953. The dispersion of surface wave on multilayered media. Bull. Seismol. Soc.
  19. Am., 43: 17-34.
  20. Heukelom, W. and Foster, C., 1960. Dynamic testing of pavements. J. Soil Mechan. Foundat. Div.,
  21. 86: 1-28 (SM1).
  22. Ismail, K., Makoto, O., Hiromi, M. and Yasuo, A., 2002. Active faults in the Gulf of Izmit on the
  23. North Anatolian Fault, NW Turkey: a high-resolution shallow seismic study. Marine Geol.,
  24. 190: 421-443. doi:10.1016/S0025-3227(02)00357-2.
  25. Jia, H., He, Z. and Ye, T., 2010. Application of SASW and MASW to buried fault detection.
  26. Progr. Geophys. (in Chinese), 25: 709-713. dio:10.3969/j.issn. 1004- 2903.2010.02.046.
  27. Jia, S., Zhang, C., Zhao, J., Fang, S., Liu, Z. and Zhao, J., 2009. Crustal structure of the
  28. rift-depression basin and Yanshan uplift in the northeast of North China. Chin. J. Geophys.
  29. (in Chinese), 52: 99-110.
  30. Jiang, D., Jiang, W. and Hu, W., 2013. Study of crustal structure and geodynamic characteristics
  31. around the Bohai Sea area. Progr. Geophys. (in Chinese), 28: 1729-1738.
  32. doi: 10.6038/pg20130413.
  33. Karray, M. and Lefebvre, G., 2008. Significance and evaluation of Poisson’s ratio in Rayleigh wave
  34. testing. Can. Geotech. J., 45: 624-635. doi:10.1139/T08-016.
  35. Liu, B., Zhao, C., Feng, S., Yang, X., He, Y., Li, W., Zou, Y. and Kou, K., 2012. Application
  36. of the three-component shallow seismic reflection method to probing buried active faults.
  37. Chin. J. Geophys. (in Chinese), 58: 2676-2686. doi: 10.6038/j.issn.0001- 5733.2012.08.020.
  38. Mari, L., 1984. Estimation of static corrections for share-wave profiling using the dispersion
  39. properties of love waves. Geophysics, 49: 1169-1179. doi:10.1190/1.3479491.
  40. Matthews, M.C., Hope, V.S. and Clayton, C.R.I., 1996. The use of surface wave in the
  41. determination of ground stiffness profiles. Proc. Inst. Civ. Eng. Geotech. Eng., 119: 84-95.
  42. McMechan, G.A. and Yedlin, M.J., 1981. Analysis of dispersive waves by wave field
  43. transformation. Geophysics, 46: 869-874. doi:10.1190/1.1441225.
  44. Pan, Y., Xia, J., Gao, L., Shen, C. and Zeng, C., 2013. Calculation of Rayleigh-wave phase
  45. velocities due to models with a high-velocity surface layer. J. Appl. Geophys., 96: 1-6.
  46. http://dx.doi.org/10.1016/j.jappgeo.2013.06.005.
  47. Park, C.B., Mille, R.D. and Xia, J., 1996. Multi-channel analysis of surface wave using Vibroseis
  48. (MASWV). Expanded Abstr., 66th Ann. Internat. SEG Mtg., Denver: 68-71.
  49. Park, C.B., Mille, R.D. and Xia, J., 1998. Imaging dispersion curves of surface wave on
  50. multi-channel record. Expanded Abstr., 68th Ann. Internat. SEG Mtg., New Orleans:
  51. 1377-1380.
  52. Park, C.B., Mille, R.D. and Xia, J., 1999. Multichannel analysis of surface wave. Geophysics, 64:
  53. 800-808. doi:10.1190/1.1444590.
  54. Rayleigh, L., 1887. On waves propagated along the plane surface of an elastic solid. Proc. London
  55. Mathemat. Soc., 17: 4-11.
  56. Ritzwoller, H.M. and Levshin, A.L., 2002. Estimating shallow shear velocities with marine
  57. multicomponent seismic data. Geophysics, 67: 1991-2004. doi: 10.1190/1.1527099.
  58. Shen, H. and Li, Q., 2014. One new Rayleigh wave velocity analysis method. Proc. 6th Internat.
  59. Conf. Environm. Engineer. Geophys., Xi’an, China: 121-125.
  60. Shuhab, D.K., Robert, R.S., Maisam, O. and Li, C., 2013. A geophysical investigation of the
  61. active Hockley Fault System near Houston, Texas. Geophysics, 78: B177-B185.
  62. doi: 10.1190/GEO2012-0258.1.
  63. Stokoe II, K.H. and Nazarian, S., 1983. Effectiveness of ground improvement from spectral analysis
  64. of surface wave. Proc. 8th Europ. Conf. Soil Mechanics Foundat. Engineer., Helsinki,
  65. Finland: 91-95.
  66. SURFACE WAVE PHASE VELOCITY ANALYSIS 317
  67. Strobbia, C. and Foti, S., 2006. Multi-offset phase analysis of surface wave data (MOPA). J. Appl.
  68. Geophys., 59: 300-313. doi:10.1016/j.jappgeo.2005.10. 009.
  69. Strobbia, C., Emam, A.E., Al-Genai, J. and Roth, J., 2010. Rayleigh wave inversion for the
  70. near-surface characterization of shallow targets in a heavy oil field in Kuwait. First Break,
  71. 28: 103-109.
  72. Strobbia, C., Laake, A., Vermeer, P. and Glushchenko, A., 2011. Surface wave: use them then lose
  73. them. Surface-wave analysis, inversion and attenuation in land reflection seismic surveying.
  74. Near Surf. Geophys., 9: 503-514. doi: 10.3997/1873-0604.2011022.
  75. Sun, R. and Liu, F., 1995. Crust structure and strong earthquake in Beijing, Tianjing, Tangshan
  76. area. Part I: P-wave velocity structure. Chin. J. Geophys. (in Chinese), 38: 599-607.
  77. Xia, J., Miller, R. and Park, C.B., 1999. Estimation of near-surface shear-wave velocity by
  78. inversion of Rayleigh wave. Geophysics, 64: 691-700. doi:10.1190/ 1.1444578.
  79. Xia, J., Chen, C., Tian, G., Miller, R.D. and Ivanov, J., 2005. Resolution of high-frequency
  80. Rayleigh-wave data. J. Environ. Eng. Geophys., 10: 99-110. doi:10.2113/ JEEG10.2.99.
  81. Xia, J., 2014. Estimation of near-surface shear-wave velocities and quality factors using
  82. multichannel analysis of surface-wave methods. J. Appl. Geophys., 103: 140-151.
  83. http://dx.doi.org/10.1016/j.jappgeo.2014.01.016.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing