Seismic data reconstruction combining discrete cosine transform and shearlet transform (ACER)

Yan, H.Y., Zhou, H., Liu, H.B., Xu, Z.H., Sun, Z.D., Liu, Z. and Zhang, M.K., 2023. Seismic data reconstruction combining discrete cosine transform and shearlet transform. Journal o Seismic Exploration, 32: 301-314. The irregularity of seismic data caused by field acquisition affects the imaging quality of subsequent seismic data processing. The reconstruction method based on compressed sensing theory can effectively restore seismic data. The aliasing caused by randomly missing seismic traces is distributed as white noise, and the effective signals are concentrated in the sparse domain. This paper transforms the seismic data reconstruction in the t-x domain into the random noise suppression problem in the discrete cosine transform (DCT) domain. The DCT is a global transform, which transforms the discontinuous t-x data into the continuous DCT data. We do multi-scale directional shearlet transform on the data in the DCT domain and eliminate the aliasing in the DCT domain through iterative inversion. The shearlet transform after the DCT can be used as a new sparse basis transform. The reconstruction experiments show that the reconstruction accuracy in the DCT+shearlet domain is higher than that in the shearlet domain.
- Candès, EJ., Romberg, J. and Tao,T., 2006. Robust uncertainty principles: exact signal
- reconstruction from highly incomplete frequency information. lEEE Transact. Inform.
- Theory,52:489-509.
- Donoho, D. L., 2006. Compressed sensing. IEEE Transact. In form. Theory, 52:
- 1289-1306.
- Easley, G., Labate, D. and Lim, W.-Q., 2008. Sparse directional image representations
- using the discrete shearlet trans form. Appl. Computat. Harmon. Analys., 25: 25-46.
- Gao, J.J., Chen, X.H., Li, J.Y., Liu, G.C. and Ma, J., 2010. Irregular seismic data
- reconstruction based on exponential threshold model of POCS method. Appl.
- Geophys., 7: 229-238.
- Gong, x., Wang, S. and Du, L. 2018. Seismic data reconstruction using a
- sparsity-promoting apex shifted hyperbolic Radon-curvelet transform. Stud. Geophys.
- Geod, 62: 450-465.
- Guo, K. and Labate, D., 2007. Optimally sparse multidimensional representation using
- shearlets. SIAM J. Math. Anal., 39: 298-318.
- Guo, K. and Labate, D., 2013. The Construction of Smooth Parseval Frames of Shearlets.
- Math. Model. Nat. Phenom., 8: 82-105.
- Liu, C., Wang, D., Sun, J. and Wang, T., 2018. Crossline-direction reconstruction of
- multi-component seismic data with shearlet sparsity constraint. J. Geophys. Engin.,
- 15:1929-1942.
- Pawelec, I., Wakin, M. and Sava, P., 202 1. Missing trace reconstruction for 2D land
- seismic data with randomized sparse sampling. Geophysics., 86(3): 25-36.
- Tang, N., Zhao, X., Li, Y. and Zhu, D., 2018. Adaptive threshold shearlet transform for
- surface microseismic data denoising. J. Appl. Geophys., 153: 64-74.
- Titova, A., Wakin, M.B. and Tura, A., 2021. Empirical analysis of compressive sensing
- reconstruction using the curvelet transform: SEAM Barrett model. First International
- Meeting for Applied Geoscience & Energy, Denver, CO.
- Wang, D., Zhang, k., Li, z., Xu, x. and Zhan.g, Y., 2021. Seismic data reconstru ction
- using Shearlet and OCT dictionary combination. First International Meeting for
- Applied Geoscience & Energy, Denver, CO.
- Wang, H., Tao, C., Chen, S., Wu, Z., Du, Y., Zhou, J., Qiu, L., Shen, H., Xu, W. and Liu,
- Y., 2019. High-precision seismic data reconstruction with multi-domain sparsity
- constraints based on curve let and high-resolution Radon trans forms. J. Appl.
- Geophys., 162: 128-137.
- Yang, P., Gao, J. and Chen, W., 2013. Irregularly sampled seismic data interpolation
- using iterative half thresholding regularizati on. IEEE Intemat. Conf. Acoustics, Speech
- and Signal Process. (ICASSP): 5820-5824,
- Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of
- nonunifonnly sampled seismic records. J. Appl. Geophys., 79: 90-99.
- Zhang, H., Chen, X.H. and Wu, X.M., 2013. Seismic data reconstruction based on CS
- and Fourier theory. Appl. Geophys., I 0: 170-180.
- Zhang, H., Diao, S., Chen, W., Huang, G., Li, H. and. Bai M, 2019. Curvelet
- reconstruction of non-uniformly sampled seismic data using the linearized Bregman
- method. Geophys. Prosp., 67: 1201-1218.
- Zhang, H., Diao, S., Che.n, w., Huang, G., Li, H. and Bai, M., 2Ol9. Curvelet
- reconstruction of non-uniformly sampled seismic data using the linearized Bregman
- method. Geophys. Prosp., 67: 1201-1218.
- Zhang, H., Chen, X. and Li, H., 2015. 3D seismic data reconstruction based on
- complex-valued curvelet transform in frequency domain. J. Appl. Geophys., 113:
- 64-73.
- Zhang., C. and van der Baan, M., 2019. Strong random noise attenuation by shearlet
- transform and time-frequency peak filtering. Geophysics, 84(6): V3l9-V33l.
- Zwartj es., P.M. and Sacchi, M.D., 2007. Fourier reconstruction of nonuniformly sampled,
- aliased seismic data. Geophysics., 72(1): V2 l-V32.