Cite this article
1
Download
8
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Seismic data reconstruction combining discrete cosine transform and shearlet transform (ACER)

HAIYANG YAN1,2 HAIBO uu4 ZHAO_HONG xu4 ZONG SUN4 ZHAO LIU4 MINGKUN ZHANG1,2,3
Show Less
1 State Key Laboratory of Petroleum Resources and Prospecting, Beijing 100029, f.R. China.,
2 CNPC Key Lab of Geophysical Exploration, Beijing, 100029, P.R. China,
3 China University of Petroleum-Beijing, Beijing 102249, P.R. China,
4 BGP Offshore, CNPC, Tianjin 300457, P.R. China,
JSE 2023, 32(4), 301–314;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yan, H.Y., Zhou, H., Liu, H.B., Xu, Z.H., Sun, Z.D., Liu, Z. and Zhang, M.K., 2023. Seismic data reconstruction combining discrete cosine transform and shearlet transform. Journal o Seismic Exploration, 32: 301-314. The irregularity of seismic data caused by field acquisition affects the imaging quality of subsequent seismic data processing. The reconstruction method based on compressed sensing theory can effectively restore seismic data. The aliasing caused by randomly missing seismic traces is distributed as white noise, and the effective signals are concentrated in the sparse domain. This paper transforms the seismic data reconstruction in the t-x domain into the random noise suppression problem in the discrete cosine transform (DCT) domain. The DCT is a global transform, which transforms the discontinuous t-x data into the continuous DCT data. We do multi-scale directional shearlet transform on the data in the DCT domain and eliminate the aliasing in the DCT domain through iterative inversion. The shearlet transform after the DCT can be used as a new sparse basis transform. The reconstruction experiments show that the reconstruction accuracy in the DCT+shearlet domain is higher than that in the shearlet domain.

Keywords
shearlet transform
DCT
compressed sensing
seismic data reconstruction.
References
  1. Candès, EJ., Romberg, J. and Tao,T., 2006. Robust uncertainty principles: exact signal
  2. reconstruction from highly incomplete frequency information. lEEE Transact. Inform.
  3. Theory,52:489-509.
  4. Donoho, D. L., 2006. Compressed sensing. IEEE Transact. In form. Theory, 52:
  5. 1289-1306.
  6. Easley, G., Labate, D. and Lim, W.-Q., 2008. Sparse directional image representations
  7. using the discrete shearlet trans form. Appl. Computat. Harmon. Analys., 25: 25-46.
  8. Gao, J.J., Chen, X.H., Li, J.Y., Liu, G.C. and Ma, J., 2010. Irregular seismic data
  9. reconstruction based on exponential threshold model of POCS method. Appl.
  10. Geophys., 7: 229-238.
  11. Gong, x., Wang, S. and Du, L. 2018. Seismic data reconstruction using a
  12. sparsity-promoting apex shifted hyperbolic Radon-curvelet transform. Stud. Geophys.
  13. Geod, 62: 450-465.
  14. Guo, K. and Labate, D., 2007. Optimally sparse multidimensional representation using
  15. shearlets. SIAM J. Math. Anal., 39: 298-318.
  16. Guo, K. and Labate, D., 2013. The Construction of Smooth Parseval Frames of Shearlets.
  17. Math. Model. Nat. Phenom., 8: 82-105.
  18. Liu, C., Wang, D., Sun, J. and Wang, T., 2018. Crossline-direction reconstruction of
  19. multi-component seismic data with shearlet sparsity constraint. J. Geophys. Engin.,
  20. 15:1929-1942.
  21. Pawelec, I., Wakin, M. and Sava, P., 202 1. Missing trace reconstruction for 2D land
  22. seismic data with randomized sparse sampling. Geophysics., 86(3): 25-36.
  23. Tang, N., Zhao, X., Li, Y. and Zhu, D., 2018. Adaptive threshold shearlet transform for
  24. surface microseismic data denoising. J. Appl. Geophys., 153: 64-74.
  25. Titova, A., Wakin, M.B. and Tura, A., 2021. Empirical analysis of compressive sensing
  26. reconstruction using the curvelet transform: SEAM Barrett model. First International
  27. Meeting for Applied Geoscience & Energy, Denver, CO.
  28. Wang, D., Zhang, k., Li, z., Xu, x. and Zhan.g, Y., 2021. Seismic data reconstru ction
  29. using Shearlet and OCT dictionary combination. First International Meeting for
  30. Applied Geoscience & Energy, Denver, CO.
  31. Wang, H., Tao, C., Chen, S., Wu, Z., Du, Y., Zhou, J., Qiu, L., Shen, H., Xu, W. and Liu,
  32. Y., 2019. High-precision seismic data reconstruction with multi-domain sparsity
  33. constraints based on curve let and high-resolution Radon trans forms. J. Appl.
  34. Geophys., 162: 128-137.
  35. Yang, P., Gao, J. and Chen, W., 2013. Irregularly sampled seismic data interpolation
  36. using iterative half thresholding regularizati on. IEEE Intemat. Conf. Acoustics, Speech
  37. and Signal Process. (ICASSP): 5820-5824,
  38. Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of
  39. nonunifonnly sampled seismic records. J. Appl. Geophys., 79: 90-99.
  40. Zhang, H., Chen, X.H. and Wu, X.M., 2013. Seismic data reconstruction based on CS
  41. and Fourier theory. Appl. Geophys., I 0: 170-180.
  42. Zhang, H., Diao, S., Chen, W., Huang, G., Li, H. and. Bai M, 2019. Curvelet
  43. reconstruction of non-uniformly sampled seismic data using the linearized Bregman
  44. method. Geophys. Prosp., 67: 1201-1218.
  45. Zhang, H., Diao, S., Che.n, w., Huang, G., Li, H. and Bai, M., 2Ol9. Curvelet
  46. reconstruction of non-uniformly sampled seismic data using the linearized Bregman
  47. method. Geophys. Prosp., 67: 1201-1218.
  48. Zhang, H., Chen, X. and Li, H., 2015. 3D seismic data reconstruction based on
  49. complex-valued curvelet transform in frequency domain. J. Appl. Geophys., 113:
  50. 64-73.
  51. Zhang., C. and van der Baan, M., 2019. Strong random noise attenuation by shearlet
  52. transform and time-frequency peak filtering. Geophysics, 84(6): V3l9-V33l.
  53. Zwartj es., P.M. and Sacchi, M.D., 2007. Fourier reconstruction of nonuniformly sampled,
  54. aliased seismic data. Geophysics., 72(1): V2 l-V32.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing