Estimation of microseismic source parameters by 2D anisotropic waveform inversion

Jarillo Michel, O. and Tsvankin, I., 2015. Estimation of microseismic source parameters by 2D anisotropic waveform inversion. Journal of Seismic Exploration, 24: 379-400. Waveform inversion (WI), which has been used primarily for high-resolution velocity analysis, can also be employed to obtain the source parameters of microseismic events. Here, we implement WI to estimate the location, origin time, and seismic moment tensor of microseismic sources embedded in VTI (transversely isotropic with a vertical symmetry axis) media. The algorithm operates with 2D multicomponent wavefields modeled using an elastic anisotropic finite-difference code. The gradient of the objective function for the three classes of parameters is calculated with the adjoint-state method. Although in the current algorithm the VTI parameters are assumed to be known, they can be included in WI at almost no additional cost. Synthetic tests for data from layered VTI media recorded by vertical receiver arrays show that it is possible to tightly constrain all source parameters, if a sufficiently accurate initial model is available. In particular, the source location can be estimated simultaneously with the moment tensor. The resolution of event location, however, somewhat decreases when the origin time is unknown or there is an error in one of the VTI parameters.
- Aki, K., and Richards, P.G., 2002. Quantitative Seismology. University Science Books, Mill
- Valley, CA.
- Dahlen, F.A. and Tromp, J., 1998. Theoretical Global Seismology. Princeton University Press.
- Princeton, NJ.
- Fichtner, A., 2006. The adjoint method in seismology: I. Theory. Phys. Earth Planet. Inter., 157:
- 86-104.
- Fichtner, A., 2009. Full Seismic Waveform Inversion for Structural and Source Parameters. Ph.D.
- thesis, Ludwig-Maximilians-University, Miinchen.
- Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic
- waveforms: Numerical results. Geophysics, 51: 1387-1403.
- Grechka, V., Singh, P. and Das, I.. 2011. Estimation of effective anisotropy simultaneously with
- locations of microseismic events. Geophysics, 76: WC143-WC155.
- Grechka, V. and Yaskevich, S., 2013. Azimuthal anisotropy in microseismic monitoring: Part 1
- Theory. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 1987-1991.
- Grechka, V. and Yaskevich, S., 2014. Azimuthal anisotropy in microseismic monitoring: A Bakken
- case study. Geophysics, 79: KS1-KS12.
- Jarillo Michel, O. and Tsvankin, I., 2014. Gradient calculation for waveform inversion of
- microseismic data in VTI media. J. Seismic Explor., 23: 201-217.
- Jost, M.L. and Herrmann, R.B., 1989. A students guide to and review of moment tensors. Seismol.
- Res. Lett., 60: 37-57.
- Kamath, N. and Tsvankin, I., 2013. Full-waveform inversion of multicomponent data for
- horizontally layered VTI media. Geophysics, 78: WC113-WC121.
- Kendall, M., Maxwell, S., Foulger, G., Eisner, L. and Lawrence, Z., 2011. Microseismicity:
- Beyond dots in a box. Introduction. Geophysics, 76: WC1-WC3.
- Kim, Y., Liu, Q. and Tromp, J., 2011. Adjoint centroid-moment tensor inversions. Geophys. J.
- Internat., 186: 264-278.
- Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. In: Bednar,
- J.B., Redner, R., Robinson, E. and Weglein, A., Eds., Conf. Inverse Scattering: Theory
- and Application. Soc. Industr. Appl. Math.: 206-220.
- Lee, H.-Y., Koo, J.M. Min, D.-J. Kwon, B.-J. and Yoo, H.S., 2010. Frequency-domain elastic full
- waveform inversion for VTI media. Geophys. J. Internat., 183; 884-904.
- Li, J., Tokséz, M.N., Li, C., Morton, $., Dohmen, T. and Katahara, K., 2013. Locating Bakken
- microseismic events with simultaneous anisotropic tomography and extended
- double-difference method. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston:
- 2073-2078.
- Journal_SEISMIC_No24-4:JOURNAL SEISMIC 11-06 24/08 14:24 Page400
- 400 JARILLO MICHEL & TSVANKIN
- Lions, J., 1972, Nonhomogeneous Boundary Value Problems and Applications. Springer Verlag,
- Berlin.
- Liu, Q. and Tromp, J., 2006. Finite-frequency kernels based on adjoint methods. Bull. Seismol.
- Soc. Am., 96: 2383-2397.
- Maxwell, S., 2010, Microseismic: Growth born from success. The Leading Edge, 29: 338-343.
- Morency, C. and Mellors, R.J., 2012. Full moment tensor and source location inversion based on
- full waveform adjoint inversion: application at the Geysers geothermal field. Expanded
- Abstr., 82nd Ann. Internat SEG Mtg., Las Vegas, 532: 1-5.
- Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a functional
- with geophysical applications. Geophys. J. Internat., 167: 495-503.
- Pratt, R., 2013. Waveform Tomography, Introduction to Theory and Practice. Western Science,
- Course notes.
- Talagrand, O. and Courtier, P., 1987. Variational assimilation of meteorological observations with
- the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteorol. Soc., 113: 1311-1328.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tromp, J., Tape, C. and Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal and
- banana-doughnut kernels. Geophys. J. Internat., 160: 195-216.
- Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, 3rd
- Ed. SEG, Tulsa, OK.
- VavryCuk, V., 2005. Focal mechanisms in anisotropic media. Geophys. J. Internat., 161: 334-346.
- Vavrycuk, V., 2007. On the retrieval of moment tensors from borehole data. Geophys. Prosp., 55:
- 381-391.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
- Geophysics, 74: WCC1-WCC26.