ARTICLE

3D seismic interpolation with a low redundancy, fast curvelet transform

JINGJIE CAO1 JINGTAO ZHAO2
Show Less
1 Shijiazhuang University of Economics, Shijiazhuang, Hebei 050031, P.R.China.,
2 Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, P.R.China.,
JSE 2015, 24(2), 121–134;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Cao, J. and Zhao, J., 2015. 3D seismic interpolation with a low redundancy, fast curvelet transform. Journal of Seismic Exploration, 24: 121-134. Seismic data interpolation is one of the main challenges encountered during pre-processing. It can provide reliable data for processes that require regular and dense sampling, like migration and multiple elimination. At present, a transform method which is based on the sparseness of signals in a transformed domain, is a commonly used strategy to get promising results. Among different transforms, the curvelet transform has optimal sparse expression for wave-fronts, thus it can be seen as a good candidate for seismic interpolation. However, the high redundancy of the 3D curvelet transform makes it computationally expensive, especially for massive data processing. Woiselle et al. (2011) proposed a new implementation of the curvelet transform, which reduces the redundancy to 10 for a 3D transform. In this paper, this new implementation is introduced to improve the computational efficiency of curvelet-based interpolation. The merits of the new implementation are discussed and the low redundancy is proven through numerical tests. Numerical results on 3D interpolation based on the new transform show that the CPU time it costs is about 1/4 of the original curvelet transform. Thus, the Woiselle’s curvelet transform is a good balance between redundancy, rapidity and performance.

Keywords
curvelet transform
seismic interpolation
sparse optimization
one-norm
References
  1. Abma, R. and Kabir, N., 2006. 3D interpolation of irregular data with a POCS algorithm. Geophysics, 71:
  2. E91-E97.
  3. Beckouche, S. and Ma, J., 2014. Simultaneous dictionary leanring and denoising for seismic data.
  4. Geophysics, 79: A27-A31.
  5. Blumensath, T. and Davies, M., 2008. Iterative thresholding for sparse approximations. J. Fourier Analys.
  6. Appl., 14: 629-654.
  7. Candés, E., Demanet, L., Donoho, D. and Ying, L., 2006. Fast discrete curvelet transforms. Multiscale.
  8. Model. Sim., 5: 861-899.
  9. 134 CAO & ZHAO
  10. Candés, E. and Donoho, D., 2000. Curvelets - A surprisingly effective nonadaptive representation for objects
  11. with edges. Vanderbilt Univ. Press: 105-120.
  12. Candés, E. and Donoho, D., 2004. New tight frames of curvelets and optimal representation of objects with
  13. piecewise C2 singularities. Communic. Pure Appl. Mathemat., 57: 219-266.
  14. Cao, J., Wang, Y., Zhao, J. and Yang, C., 2011. A review on restoration of seismic wavefields based on
  15. regularization and compressive sensing. Inverse Prob. Sci. Engin., 19: 679-704.
  16. Chauris, H. and Nguyen, T., 2008. Seismic demigration/migration in the curvelet domain. Geophysics, 73:
  17. S35-S46.
  18. Chen,S.,Donoho,D. and Saunders, M., 1998. Atomic decomposition by basis pursuit. SIAM J. Sci.
  19. Comput., 20: 33-61.
  20. Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linear inverse
  21. problems with a sparsity constraint. Communic. Pure Appl. Mathemat., 57: 1413-1457.
  22. Fomel, S. and Liu, Y., 2010. Seislet transform and seislet frame. Geophysics, 75(3): V25-V38.
  23. Hennenfent, G. and Herrmann, F., 2006. Seismic denoising with non-uniformly sampled curvelets. Comput.
  24. Sci. Engin., 8: 16-25.
  25. Herrmann, F. and Hennenfent, G., 2008. Non-parametric seismic data recovery with curvelet frames.
  26. Geophys. J. Internat., 173: 233-248.
  27. Herrmann, F., Moghaddam, P. and Stolk, C., 2008a. Sparsity- and continuity-promoting seismic image
  28. recovery with curvelet frames. Appl. Comput. Harmon. Anal., 24: 50-173.
  29. Herrmann, F., Wang, D., Hennenfent, G. and Moghaddam, P., 2008b. Curvelet-based seismic data
  30. processing: a multiscale and nonlinear approach. Geophysics, 73(1): Al-A5.
  31. Kumar, V. and Herrmann, F., 2008. Deconvolution with curvelet-domain sparsity. Expanded Abstr., 78th
  32. Ann. Internat. SEG Mtg., Las Vegas: 1996-2000.
  33. Kumar, V., Oueity, J., Clowes, R.M. and Herrmann, F., 2011. Enhancing crustal reflection data through
  34. curvelet denoising. Tectonophysics, 508: 106-116.
  35. Lin, T. and Herrmann, F., 2013. Robust estimation of primaries by sparse inversion via one-norm
  36. minimization. Geophysics, 78(3): R133-R150.
  37. Liu, B. and Sacchi, M., 2004. Minimum weighted norm interpolation of seismic records. Geophysics, 69:
  38. 1560-1568.
  39. Naghizadeh, M., 2009. Parametric reconstruction of multidimensional seismic records. Ph.D. thesis University
  40. of Alberta, Edmonton.
  41. Neelamani, R., Baumstein, A., Gillard, D., Hadidi, M. and Soroka, W., 2008. Coherent and random noise
  42. attenuation using the curvelet transform. The Leading Edge, 27: 240-248.
  43. Sacchi, M. and Liu. B., 2005. Minimum weighted norm wavefield reconstruction for AVA imaging.
  44. Geophys. Prosp., 53: 787-801.
  45. Sacchi, M. and Ulrych, T., 1996. Estimation of the discrete Fourier transform, a linear inversion approach.
  46. Geophysics, 61: 1128-1136.
  47. Sacchi. M. and Verschuur, D. and Zwartjes, P., 2004. Data reconstruction by generalized deconvolution.
  48. Expanded Abstr., 74th Ann. Internat. SEG Mtg., Denver: 1989-1992.
  49. Sacchi, M., Ulrych, T. and Walker, C., 1998. Interpolation and extrapolation using a high resolution discrete
  50. Fourier transform. IEEE T. Signal Process., 46: 31-38.
  51. Soubaras, R., 2004. Spatial interpolation of aliased seismic data. Expanded Abstr., 74th Ann. Internat. SEG
  52. Mtg., Denver: 1167-70.
  53. Starck, J., Candés, E. and Donoho, D., 2002. The curvelet transform for image denoising. IEEE Trans.
  54. Image Process., 11: 670-684.
  55. Trad, D., Ulrych, T. and Sacchi, M., 2002. Accurate interpolation with high-resolution time-variant Radon
  56. transforms. Geophysics, 67: 644-656.
  57. Tang, G., Ma, J. and Yang, H., 2012. Seismic data denoising based on learning-type overcomplete
  58. dictionaries. Appl. Geophys., 9: 27-32.
  59. Woiselle, A., Starck, J. and Fadili, J., 2011. 3D Data denoising and inpainting with the low-redundancy fast
  60. curvelet transform. J. Math. Imaging. Vis., 39: 121-139.
  61. Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of nonuniformly sampled seismic
  62. records. J. Appl. Geophys., 79: 90-99.
  63. Yarham, C. and Herrmann, F., 2008. Bayesian ground-roll separation by curvelet-domain sparsity promotion.
  64. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 3662-3666.
  65. Zwartjes, P. and Gisolf, A., 2006. Fourier reconstruction of marine-streamer data in four spatial coordinates.
  66. Geophysics, 71(6): V171-V186.
  67. Zwartjes, P. and Gisolf, A., 2007. Fourier reconstruction with sparse inversion. Geophys. Prosp., 55:
  68. 199-221.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing