ARTICLE

The application of high-order cumulants zero slice in wavelet phase correction

YONGSHOU DAI1 YANAN ZHANG1,2 MANMAN ZHANG1 RONGRONG WANG1 PENG ZHANG1
Show Less
1 College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, P.R. China.,
2 Qing Dao Topscomm Communication Inc., Qingdao 266024, P.R. China.,
JSE 2015, 24(2), 151–167;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dai, Y., Zhang, Y., Zhang, M., Wang, R. and Zhang, P., 2015. The application of high-order cumulants zero slice in wavelet phase correction. Journal of Seismic Exploration, 24: 151-167. To solve the problem of Gaussian noise sensitivity in the traditional seismic wavelet phase correction criteria, a wavelet phase correction method based on high-order cumulants (HOCs) zero slice was proposed, and its application conditions and scope were researched. The wavelet phase correction results were evaluated based on the criterion of calculating the HOCs zero slice of deconvolution results. Because of HOC’-s’ insensitivity to Gaussian noise, the method could effectively achieve the wavelet phase correction under conditions with Gaussian noise pollution. A simulation showed the effectiveness of the method, but the criterion was limited by data length, and the criterion’s anti-noise capabilities could be improved with increased data length. The processing of actual seismic data demonstrated the practicability of the method. This method provides a new method of wavelet phase correction, and the criterion based on HOCs zero slice can be used in deconvolution and seismic wavelet estimation.

Keywords
high-order cumulants (HOC)
zero slice
wavelet phase correction
evaluation criterion
Gaussian noise
References
  1. Brossier, R., Operto, S. and Virieux, J., 2009. Robust elastic frequency-domain full-waveform
  2. inversion using the Li norm. Geophys. Res. Lett., 36(20): 310-314.
  3. Cao, D.P., Yin, X.Y., Zhang, F.C. and Kong, Q.F., 2009. A study on the method of joint
  4. inversion of multiscale seismic data. Chin. J. Geophys. (in Chinese), 52: 1059-1067.
  5. Cao, M.Q. and Zhou, X.Y., 2003. Statistics homomorphic deconvolution. Oil Geophys. Prosp.,
  6. 38(S): 1-9.
  7. Chen, Z.B., Wang, Y.H., Chen, H.X. and Li, J.Y., 2013. High-resolution seismic processing by
  8. Gabor deconvolution. J. Geophys. Engin., 10(6): 1-10.
  9. Dai, Y.S., Niu, H., Peng, X. and Wang, S.S., 2011. Seismic wavelet extraction based on
  10. auto-regressive and moving average model and particle swarm optimization. J. China Univ.
  11. Petrol. (Ed. Nat. Sc.), 35(3): 47-50.
  12. Feng, Z.H., Liu, C., Feng, X., Wang, D. and Wang, Z.G., 2011. An automatic seismic horizon
  13. picking-up method based on one dimensional slice of cross fourth order cumulant. Oil
  14. Geophys. Prosp., 46: 58-63.
  15. Gao, S.W., Zhao, B., He, Z.H. and Ma, Y.N., 2009. Research progress of seismic wavelet
  16. extraction. Progr. Geophys. (in Chinese), 24: 1384-1391.
  17. Gao, W. and Liu, H.S., 2013. Strong noise attenuation method based on the multiuser kurtosis
  18. criterion. Appl. Geophys., 10: 25-32.
  19. Jeong, W., Pyun, S., Son, W. and Min, D.J., 2013. A numerical study of simultaneous-source full
  20. waveform inversion with L,-norm. Geophys. J. Internat., 194: 1727-1737.
  21. Lazear, G.D., 1993. Mixed-phase wavelet estimation using fourth-order cumulants. Geophysics, 58:
  22. 1042-1051.
  23. Levy, $. and Oldenburg, D.W., 1987. Automatic phase correction of common-midpoint stacked
  24. data. Geophysics, 52: 51-59.
  25. Li, G.F., Qin, D.H., Peng, G.X., Yue, Y. and Zhai, T.L., 2013. Experimental analysis and
  26. application of sparsity constrained deconvolution. Appl. Geophys., 10: 191-200.
  27. Liu, Y.J., Li, Z.C. and Guo, K., 2012. Non-stationary phase correction based on local similarity.
  28. Oil Geophys. Prosp., 47: 887-893.
  29. APPLICATION OF HIGH-ORDER CUMULANTS 167
  30. Lois, A., Sokos, E., Martakis, N., Paraskevopoulos, P. and Tselentis, G.A., 2013. A new
  31. automatic S-onset detection technique: Application in local earthquake data. Geophysics, 78:
  32. KSi-KS11.
  33. Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance from
  34. reflection seismograms. Geophysics, 48: 1318-1337.
  35. Robinson, E.A., 1967. Predictive decomposition of time series with application to seismic
  36. exploration. Geophysics, 32: 418-484.
  37. Sacchi, M.D., 1997. Reweighting strategies in seismic deconvolution. Geophys. J. Internat., 129:
  38. 651-656.
  39. Tang, B. and Yin, C., 2001. Non-minimum phase seismic wavelet reconstruction based on higher
  40. order statistics. Chin. J. Geophys. (in Chinese), 44: 404-410.
  41. Wang, D.Y., Li, Z.C., Zhang, F.Q., Dong, L.Q., Ding, C.Z. and Huang, J.P., 2013. Mixed-phase
  42. seismic wavelet extraction of SIMO system based on vector prediction. Acta Seismol. Sin.,
  43. 35: 561-572.
  44. Wang, S.D. and Wang, B., 2012. Time-lapse Bayesian AVO waveform inversion. Chin. J.
  45. Geophys. (in Chinese), 55: 2422-2431.
  46. Wang, Y., Cao, J. and Yang, C., 2011. Recovery of seismic wavefieids based on compressive
  47. sensing by an L,-norm constrained trust region method and the piecewise random
  48. subsampling. Geophys. J. Internat., 187: 199-213.
  49. Wu, Y.T., Liu, Y.K., Chang, X., Zhang, J.M., Chen, B.S., Li, P. and Li, X.C., 2012. An
  50. improved matching method based on L,-norm for multiple elimination and application in
  51. deepwater basin of South China Sea. Chin. J. Geophys. (in Chinese), 55: 1007-1016.
  52. Yao, F.C., 1990. Amplitude spectra compensation and phase correction. Geophys. Prosp. Petrol.,
  53. 29: 46-57.
  54. Yu, Y.C., Wang, S.X., Yuan, S.Y. and Qi, P.F., 2011. Phase estimation in bispectral domain
  55. based on conformal mapping and applications in seismic wavelet estimation. Appl. Geophys. ,
  56. 8: 36-47.
  57. Yu, Y.C., Wang, S.X., Yuan, S.Y. and Qi, P.F., 2012. Phase spectrum estimation of the seismic
  58. wavelet based on a criterion function. Petrol. Sci., 9: 170-181.
  59. Yuan, S.Y. and Wang, S.X., 2010. Noise attenuation without spatial assumptions about seismic
  60. coherent events. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 3524-3528.
  61. Yuan. S.Y. and Wang, S.X., 2011. Influence of inaccurate wavelet phase estimation on seismic
  62. inversion. Appl. Geophys., 8: 48-59.
  63. Zhang, G.Z., Liu, H. and Yin, X.Y., 2005. Method for fine picking up seismic wavelet at up-hole
  64. trace. Oil Geophys. Prosp., 40(2): 158-162.
  65. Zhang, R. and Castagna, J., 2011. Seismic sparse-layer reflectivity inversion using basis pursuit
  66. decomposition. Geophysics, 76(6): 147-158.
  67. Zhang, Y.N., Dai, Y.S., Chen, J., Wei, Y.Q. and Zhang, M.M., 2013. The research on the
  68. influence of wavelet phase on the inversion results of reflection coefficient sequences by
  69. using the ARMA model of symmetrical mapping pole-zeros. Chin. J. Geophys. (in Chinese),
  70. 56: 2043-2054.
  71. Zhang, Y.N,, Dai, Y.S., Wang, S.S., Peng, X. and Niu, H., 2011. High resolution wavelet
  72. estimation by ARMA modeling. Oil Geophys. Prosp., 46: 686-694.
  73. Zhou, X.Y., 1989. Constant phase correction. Oil Geophys. Prosp., 24: 119-129.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing