A novel method for simultaneous seismic data interpolation and noise removal based on the L0 norm constraint

Wang, B., Li, H. and Chen, X., 2015. A novel method for simultaneous seismic data interpolation and noise removal based on the Lo norm constraint. Journal of Seismic Exploration, 24: 187-204. The Projection Onto Convex Sets (POCS) method is an efficient iterative method for seismic data interpolation. In each iteration, observed seismic data is inserted into the updated solution. If observed seismic data contains some random noise, the noisy data would be inserted into the final solution and it reduces the Signal to Noise Ratio (SNR) of the interpolated seismic data. Weighted POCS method can weaken the noise effects because it uses a weight factor to scale the observed seismic data, then fewer noisy data is inserted into the updated solution, but it still inserts some random noise and the final performance is unsatisfactory. In this paper; a novel method is proposed by combining the advantages of the weighted POCS method and the Iterative Hard Threshold (IHT) method: the weighted POCS method used for interpolation and the IHT method used for random noise elimination. The novel method can be used for simultaneous seismic data interpolation and random noise removal, and its superior performances are demonstrated on synthetic and real datasets.
- Abma, R. and Kabir, N., 2006. 3D interpolation of irregular data with a POCS algorithm.
- Geophysics, 71: E91-E97.
- Blumensath, T. and Davies, M.E., 2008. Iterative thresholding for sparse approximations. J. Fourier
- Analys. Applicat., 14: 629-654.
- Blumensath, T. and Davies, M.E., 2009. Iterative hard thresholding for compressed sensing. Appl.
- Computat. Harmon. Analys., 27: 265-274.
- Bregman, L., 1965. The method of successive projection for finding a common point of convex sets
- (Theorems for determining common point of convex sets by method of successive
- projection). Soviet Mathemat., 6: 688-692.
- Candés, E., Demanet, L., Donoho, D. and Ying, L., 2006. Fast discrete curvelet transforms.
- Multisc. Model. Simulat., 5: 861-899.
- Daubechies, I., Defrise, M. and De Mol, C., 2004. An iterative thresholding algorithm for linear
- inverse problems with a sparsity constraint. Communicat. Pure Appl. Mathemat., 57:
- 1413-1457.
- Gao, J., Sacchi, M. and Chen, X., 2013. A fast reduced-rank interpolation method for prestack
- seismic volumes that depend on four spatial dimensions. Geophysics, 78: V21-V30.
- Gao, J., Chen, X., Li, J., Liu, G. and Ma, J., 2010. Irregular seismic data reconstruction based on
- exponential threshold model of POCS method. Appl. Geophys., 7: 229-238.
- Gao, J., Stanton, A., Naghizadeh, M., Sacchi, M.D. and Chen, X., 2012. Convergence
- improvement and noise attenuation considerations for beyond alias projection onto convex
- sets reconstruction. Geophys. Prosp., 61: 138-151.
- Herrmann, F.J., Boniger, U. and Verschuur, D.J., 2007. Non-linear primary-multiple separation
- with directional curvelet frames. Geophys. J. Internat., 170: 781-799.
- Loris, I., Douma, H., Nolet, G., Daubechies, I. and Regone, C., 2010. Nonlinear regularization
- techniques for seismic tomography. J. Computat. Phys., 229: 890-905.
- Naghizadeh, M., 2012. Seismic data interpolation and denoising in the frequency-wavenumber
- domain. Geophysics, 77(2): V71-V80.
- 204 WANG, LI & CHEN
- Naghizadeh, M. and Sacchi, M.D., 2010. Beyond alias hierarchical scale curvelet interpolation of
- regularly and irregularly sampled seismic data. Geophysics, 75(6): WB189-WB202.
- Oropeza, V. and Sacchi, M.D., 2011. Simultaneous seismic data denoising and reconstruction via
- multichannel singular spectrum analysis. Geophysics, 76(3): V25-V32.
- Stanton, A. and Sacchi, M.D., 2013. Vector reconstruction of multicomponent seismic data.
- Geophysics, 78(4): V131-V145.
- Stark, H. and Oskoui, P., 1989. High-resolution image recovery from image-plane arrays, using
- convex projections. JOSA A, 6: 1715-1726.
- Van Den Berg, E. and Friedlander, M.P., 2008. Probing the Pareto frontier for basis pursuit
- solutions. SIAM J. Scientif. Comput., 31: 890-912.
- Wang, B., Wu, R., Geng, Y. and Chen, X., 2014. Dreamlet-based interpolation using POCS
- method. J. Appl. Geophys., 109: 256-265.
- Wang, B., Li, J. Chen, X., and Cao, J., 2015. Curvelet-based 3D reconstruction of digital cores
- using POCS method. Chin. J. Geophys., in press.
- Yang, P., Gao, J. and Chen, W., 2012. Curvelet-based POCS interpolation of nonuniformly sampled
- seismic records. J. Appl. Geophys., 79: 90-99.
- Yang, P., Gao, J. and Chen, W., 2013. On analysis-based two-step interpolation methods for
- randomly sampled seismic data. Comput. Geosci., 51: 449-461.
- Zhang, H. and Chen, X.-H., 2013. Seismic data reconstruction based on jittered sampling and
- curvelet transform. Chin. J. Geophys., 56: 1637-1649.