ARTICLE

Seismic interferometry in parabolic Radon domain

HENG ZHU1 DE-LI WANG1 GEORGIOS P. TSOFlias2
Show Less
1 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, P.R. China. zhuheng129@gmail.com; wangdeli@jlu.edu.cn,
2 Department of Geology, The University of Kansas, Lawrence, KS 66045, U.S.A. tsoflias@ku.edu,
JSE 2015, 24(1), 37–50;
Submitted: 24 March 2014 | Accepted: 20 November 2014 | Published: 1 February 2015
© 2015 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhu, H., Wang, D.-L. and Tsoflias, G.P., 2015. Seismic interferometry in parabolic Radon domain. Journal of Seismic Exploration, 24: 37-50. Seismic interferometry can redatum sources to the receiver locations in the subsurface, without knowing the information about the medium between sources and receivers. Theoretically, the receivers should be enclosed by the sources; however, in practice this condition is difficult to satisfy. In addition, some trace gathers may be lost. This will cause spurious events in the virtual shot gathers. Since parabolic Radon transform can be used to restore the data with missing trace gathers, seismic interferometry based on parabolic Radon transform can avoid the effect of these missing shots or traces, and suppress the spurious events. In addition, computation time can be saved with this method because parabolic Radon transform can usually reduce the data volume. We demonstrate this method with synthetic data and OBS data collected in the South China Sea.

Keywords
seismic interferometry
parabolic Radon domain
suppression of spurious events
cross-correlation
time-space domain
References
  1. Amundsen, L., 1999. Elimination of free surface-related multiples without need of the sourcewavelet. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1064-1067.
  2. Bakulin, A. and Calvert, R., 2006. The virtual source method: Theory and case study. Geophysics,71: SI139-SI150. doi: 10.1190/1.2216190.
  3. Bharadwaj, P., Schuster, G.T., Mallinson, I. and Dai, W., 2012. Theory of supervirtual refractioninterferometry. Geophys. J. Internat., 188: 263-273. doi: 10.1111/gji.2012.188.issue-1.
  4. Carriere, O. and Gerstoft, P., 2013. Deep-water subsurface imaging using OBS interferometry.
  5. Geophysics, 78(2): Q15-Q24. doi: 10.1190/geo2012-0241.1.
  6. De Ridder, S. and Dellinger, J., 2011. Ambient seismic noise eikonal tomography for near-surfaceimaging at Valhall. The Leading Edge, 30: 506-512. doi: 10.1190/1.3589108.
  7. Darche, G., 1990. Spatial interpolation using a fast parabolic transform. Expanded Abstr., 60th Ann.Internat. SEG Mtg., San Francisco: 1647-1650.
  8. Draganov, D., Wapenaar, C.P.A., Mulder, W., Singer, J. and Verdel, A., 2007. Retrieval ofreflections from seismic background-noise measurements. Geophys. Res. Lett., 34: L04305.doi: 10.1029/2006GL028735.
  9. Gaiser, J. and Vasconcelos, I., 2010. Elastic interferometry for ocean bottom cable data: Theoryand examples. Geophys. Prosp., 58: 347-360. doi: 10.1111/(ISSN) 1365-2478.SEISMIC INTERFEROMETRY 49
  10. Gerstoft, P., Sabra, K.G., Roux, P., Kuperman, W.A. and Fehler, M.C., 2006. Green’s functionsextraction and surface-wave tomography from microseisms in southern California.
  11. Geophysics, 71 (4): SI23-SI31. doi: 10 .1190/1.2210607.
  12. Haines, S.S., 2011. PP and PS interferometric images of near-seafloor sediments. Expanded Abstr.,81st Ann. Internat. SEG Mtg., San Antonio: 1288-1292.
  13. Kabir, M.M.N. and Verschuur, D.J., 1995. Restoration of missing offsets by parabolic Radontransform. Geophys. Prosp., 43: 347-368.
  14. Miyazawa, M., Snieder, R. and Venkataraman, A., 2008. Application of seismic interferometry toextract P- and S-wave propagation and observation of shear-wave splitting from noise dataat Cold Lake, Alberta, Canada. Geophysics, 73 (4): D35-D40. doi: 10.1190/1.2937172.
  15. Mehta, K., Snieder, R. and Graizer, V., 2007. Extraction of near-surface properties for a lossylayered medium using the propagator matrix. Geophys. J. Internat., 169: 271-280.
  16. Mehta, K., Bakulin, A., Sheiman, J., Calvert, R. and Snieder, R., 2007. Improving the virtualsource method by wavefield separation. Geophysics, 72 (4): V79-V86. doi:1190/1.2733020.
  17. Minato, S., Matsuoka, T., Tsuji, T., Draganov, D., Hunziker, J. and Wapenaar, C.P.A., 2011.
  18. Seismic interferometry using multidimensional deconvolution and crosscorrelation forcrosswell seismic reflection data without borehole sources. Geophysics, 76 (1): SA19-SA34,doi: 10.1190/1.3511357.
  19. Minato, S., Tsuji, T., Matsuoka, T. and Obana, K., 2012. Crosscorrelation of earthquake data usingstationary phase evaluation: Insight into reflection structures of oceanic crust surface in the
  20. Nankai Trough. Internat. J. Geophys., 25: 1-8. doi: 10.1155/2012/101545.
  21. Roux, P., Sabra, K.G., Gerstoft, P., Kuperman, W.A. and Fehler, M.C., 2005. P-waves fromcross-correlation of seismic noise. Geophys. Res. Lett., 32: 119303. doi:1029/2005GL023803.
  22. Schuster, G.T., Yu, J., Sheng, J. and Rickett, J., 2004. Interferometric/daylight seismic imaging.Geophys. J. Internat., 157: 838-852.
  23. Schuster, G.T. and Zhou, M., 2006. A theoretical overview of model-based and correlation-basedredatuming methods. Geophysics, 71 (4): SI103-SI110.
  24. Schuster, G.T., 2009. Seismic Interferometry. Cambridge University Press, Cambridge.
  25. Snieder, R., Grét, A. Douma, H. and Scales, J., 2002. Coda wave interferometry forestimating nonlinear behavior in seismic velocity. Science, 295: 2253-2255. doi:1126/science. 1070015.
  26. Snieder, R., Sheiman, J. and Calvert, R., 2006. Equivalence of the virtual- source method andwave-field deconvolution in seismic interferometry. Phys. Rev. E, 73: 066620.
  27. Shapiro, N.M. and Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlationsof the ambient seismic noise. Geophys. Res. Lett, 31: LO7614. doi:1029/2004GL019491.
  28. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H., 2005. High-resolution surface-wavetomography from ambient seismic noise. Science, 307: 1615-1618. doi:1126/science. 1108339.
  29. Trad, D., Ulrych, T.J. and Sacchi, M.D., 2002. Accurate interpolation with high-resolutiontime-variant Radon transforms. Geophysics, 67(2): 644-656.
  30. Vasconcelos, I., Snieder, R. and Hornby, B., 2008. Imaging internal multiples from subsalt VSPdata - Examples of target-oriented interferometry. Geophysics, 73(4): 7-S168. doi:1190/1.2944168.
  31. Wapenaar, C.P.A. and Verschuur, D.J., 1996. Processing of ocean bottom data: The Dolphin
  32. Project. Delft University of Technology, 6.1-6.26.
  33. Wapenaar, C.P.A., 2004. Retrieving the elastodynamic Green’s function of an arbitraryinhomogeneous medium by cross correlation. Phys. Rev. Lett., 93: 254301. doi:1103/PhysRevLett.93.254301.
  34. Wapenaar, C.P.A., Slob, E. and Snieder, R., 2008b. Seismic and electromagnetic controlled-sourceinterferometry in dissipative media. Geophys. Prosp., 56: 419-434.50 ZHU, WANG & TSOFLIAS
  35. Wapenaar, C.P.A., Draganov, D., Snieder, R., Campman, X. and Verdel, A. 2010a. Tutorial onseismic interferometry: part 1 - basic principles and applications. Geophysics, 75:A195-A209.
  36. Wapenaar, C.P.A., Slob, E., Snieder, R. and Curtis, A., 2010b. Tutorial on seismic interferometry:
  37. Part 2 - Underlying theory and new advances. Geophysics, 75: A211-A227. doi:1190/1.3463440.
  38. Yu, J. and Schuster, G.T., 2006. Crosscorrelogram migration of inverse vertical seismic profiledata. Geophysics, 71: S1-S11. doi: 10 .1190/1.2159056.
  39. Zhou, B. and Greenhalgh, S.A., 1994. Linear and parabolic t-p transforms revisited. Geophysics,59: 1133-1149.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing