ARTICLE

Seismic interferometry in parabolic Radon domain

HENG ZHU1 DE-LI WANG1 GEORGIOS P. TSOFlias2
Show Less
1 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, P.R. China. zhuheng129@gmail.com; wangdeli@jlu.edu.cn,
2 Department of Geology, The University of Kansas, Lawrence, KS 66045, U.S.A. tsoflias@ku.edu,
JSE 2015, 24(1), 37–50;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhu, H., Wang, D.-L. and Tsoflias, G.P., 2015. Seismic interferometry in parabolic Radon domain. Journal of Seismic Exploration, 24: 37-50. Seismic interferometry can redatum sources to the receiver locations in the subsurface, without knowing the information about the medium between sources and receivers. Theoretically, the receivers should be enclosed by the sources; however, in practice this condition is difficult to satisfy. In addition, some trace gathers may be lost. This will cause spurious events in the virtual shot gathers. Since parabolic Radon transform can be used to restore the data with missing trace gathers, seismic interferometry based on parabolic Radon transform can avoid the effect of these missing shots or traces, and suppress the spurious events. In addition, computation time can be saved with this method because parabolic Radon transform can usually reduce the data volume. We demonstrate this method with synthetic data and OBS data collected in the South China Sea.

Keywords
seismic interferometry
parabolic Radon domain
suppression of spurious events
cross-correlation
time-space domain
References
  1. Amundsen, L., 1999. Elimination of free surface-related multiples without need of the source
  2. wavelet. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1064-1067.
  3. Bakulin, A. and Calvert, R., 2006. The virtual source method: Theory and case study. Geophysics,
  4. 71: SI139-SI150. doi: 10.1190/1.2216190.
  5. Bharadwaj, P., Schuster, G.T., Mallinson, I. and Dai, W., 2012. Theory of supervirtual refraction
  6. interferometry. Geophys. J. Internat., 188: 263-273. doi: 10.1111/gji.2012.188.issue-1.
  7. Carriere, O. and Gerstoft, P., 2013. Deep-water subsurface imaging using OBS interferometry.
  8. Geophysics, 78(2): Q15-Q24. doi: 10.1190/geo2012-0241.1.
  9. De Ridder, S. and Dellinger, J., 2011. Ambient seismic noise eikonal tomography for near-surface
  10. imaging at Valhall. The Leading Edge, 30: 506-512. doi: 10.1190/1.3589108.
  11. Darche, G., 1990. Spatial interpolation using a fast parabolic transform. Expanded Abstr., 60th Ann.
  12. Internat. SEG Mtg., San Francisco: 1647-1650.
  13. Draganov, D., Wapenaar, C.P.A., Mulder, W., Singer, J. and Verdel, A., 2007. Retrieval of
  14. reflections from seismic background-noise measurements. Geophys. Res. Lett., 34: L04305.
  15. doi: 10.1029/2006GL028735.
  16. Gaiser, J. and Vasconcelos, I., 2010. Elastic interferometry for ocean bottom cable data: Theory
  17. and examples. Geophys. Prosp., 58: 347-360. doi: 10.1111/(ISSN) 1365-2478.
  18. SEISMIC INTERFEROMETRY 49
  19. Gerstoft, P., Sabra, K.G., Roux, P., Kuperman, W.A. and Fehler, M.C., 2006. Green’s functions
  20. extraction and surface-wave tomography from microseisms in southern California.
  21. Geophysics, 71 (4): SI23-SI31. doi: 10 .1190/1.2210607.
  22. Haines, S.S., 2011. PP and PS interferometric images of near-seafloor sediments. Expanded Abstr.,
  23. 81st Ann. Internat. SEG Mtg., San Antonio: 1288-1292.
  24. Kabir, M.M.N. and Verschuur, D.J., 1995. Restoration of missing offsets by parabolic Radon
  25. transform. Geophys. Prosp., 43: 347-368.
  26. Miyazawa, M., Snieder, R. and Venkataraman, A., 2008. Application of seismic interferometry to
  27. extract P- and S-wave propagation and observation of shear-wave splitting from noise data
  28. at Cold Lake, Alberta, Canada. Geophysics, 73 (4): D35-D40. doi: 10.1190/1.2937172.
  29. Mehta, K., Snieder, R. and Graizer, V., 2007. Extraction of near-surface properties for a lossy
  30. layered medium using the propagator matrix. Geophys. J. Internat., 169: 271-280.
  31. Mehta, K., Bakulin, A., Sheiman, J., Calvert, R. and Snieder, R., 2007. Improving the virtual
  32. source method by wavefield separation. Geophysics, 72 (4): V79-V86. doi:
  33. 1190/1.2733020.
  34. Minato, S., Matsuoka, T., Tsuji, T., Draganov, D., Hunziker, J. and Wapenaar, C.P.A., 2011.
  35. Seismic interferometry using multidimensional deconvolution and crosscorrelation for
  36. crosswell seismic reflection data without borehole sources. Geophysics, 76 (1): SA19-SA34,
  37. doi: 10.1190/1.3511357.
  38. Minato, S., Tsuji, T., Matsuoka, T. and Obana, K., 2012. Crosscorrelation of earthquake data using
  39. stationary phase evaluation: Insight into reflection structures of oceanic crust surface in the
  40. Nankai Trough. Internat. J. Geophys., 25: 1-8. doi: 10.1155/2012/101545.
  41. Roux, P., Sabra, K.G., Gerstoft, P., Kuperman, W.A. and Fehler, M.C., 2005. P-waves from
  42. cross-correlation of seismic noise. Geophys. Res. Lett., 32: 119303. doi:
  43. 1029/2005GL023803.
  44. Schuster, G.T., Yu, J., Sheng, J. and Rickett, J., 2004. Interferometric/daylight seismic imaging.
  45. Geophys. J. Internat., 157: 838-852.
  46. Schuster, G.T. and Zhou, M., 2006. A theoretical overview of model-based and correlation-based
  47. redatuming methods. Geophysics, 71 (4): SI103-SI110.
  48. Schuster, G.T., 2009. Seismic Interferometry. Cambridge University Press, Cambridge.
  49. Snieder, R., Grét, A. Douma, H. and Scales, J., 2002. Coda wave interferometry for
  50. estimating nonlinear behavior in seismic velocity. Science, 295: 2253-2255. doi:
  51. 1126/science. 1070015.
  52. Snieder, R., Sheiman, J. and Calvert, R., 2006. Equivalence of the virtual- source method and
  53. wave-field deconvolution in seismic interferometry. Phys. Rev. E, 73: 066620.
  54. Shapiro, N.M. and Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlations
  55. of the ambient seismic noise. Geophys. Res. Lett, 31: LO7614. doi:
  56. 1029/2004GL019491.
  57. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H., 2005. High-resolution surface-wave
  58. tomography from ambient seismic noise. Science, 307: 1615-1618. doi:
  59. 1126/science. 1108339.
  60. Trad, D., Ulrych, T.J. and Sacchi, M.D., 2002. Accurate interpolation with high-resolution
  61. time-variant Radon transforms. Geophysics, 67(2): 644-656.
  62. Vasconcelos, I., Snieder, R. and Hornby, B., 2008. Imaging internal multiples from subsalt VSP
  63. data - Examples of target-oriented interferometry. Geophysics, 73(4): $157-S168. doi:
  64. 1190/1.2944168.
  65. Wapenaar, C.P.A. and Verschuur, D.J., 1996. Processing of ocean bottom data: The Dolphin
  66. Project. Delft University of Technology, 6.1-6.26.
  67. Wapenaar, C.P.A., 2004. Retrieving the elastodynamic Green’s function of an arbitrary
  68. inhomogeneous medium by cross correlation. Phys. Rev. Lett., 93: 254301. doi:
  69. 1103/PhysRevLett.93.254301.
  70. Wapenaar, C.P.A., Slob, E. and Snieder, R., 2008b. Seismic and electromagnetic controlled-source
  71. interferometry in dissipative media. Geophys. Prosp., 56: 419-434.
  72. 50 ZHU, WANG & TSOFLIAS
  73. Wapenaar, C.P.A., Draganov, D., Snieder, R., Campman, X. and Verdel, A. 2010a. Tutorial on
  74. seismic interferometry: part 1 - basic principles and applications. Geophysics, 75:
  75. A195-A209.
  76. Wapenaar, C.P.A., Slob, E., Snieder, R. and Curtis, A., 2010b. Tutorial on seismic interferometry:
  77. Part 2 - Underlying theory and new advances. Geophysics, 75: A211-A227. doi:
  78. 1190/1.3463440.
  79. Yu, J. and Schuster, G.T., 2006. Crosscorrelogram migration of inverse vertical seismic profile
  80. data. Geophysics, 71: S1-S11. doi: 10 .1190/1.2159056.
  81. Zhou, B. and Greenhalgh, S.A., 1994. Linear and parabolic t-p transforms revisited. Geophysics,
  82. 59: 1133-1149.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing