ARTICLE

Linearized AVA inversion of PP and PS reflections from low-velocity targets using Zoeppritz equations

XINFA ZHU GEORGE A. MCMECHAN TING GONG
Show Less
Center for Lithospheric Studies, The University of Texas at Dallas, 800 West Campbell Road (ROC21), Richardson, TX 75080-3021, U.S.A.,
JSE 2014, 23(4), 313–339;
Submitted: 26 March 2014 | Accepted: 5 June 2014 | Published: 1 September 2014
© 2014 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The top of a reservoir is often a seismic interface of decreasing velocity. No critical angle exists in reflections from such an interface, and so Zoeppritz reflection coefficients are closed-form and accurate at all incident angles and frequencies. However, most existing AVO methods use approximations to the Zoeppritz equations. These approximations assume small contrasts and small angles, and the number of invertible parameters is usually limited to two or three (the so-called two- or three-term AVO). We propose using the Zoeppritz equations for amplitude inversion of target reflections without critical angles. The Fréchet derivatives are calculated analytically. We use a linearized iterative least-squares inversion scheme. This algorithm is applicable to PP, PS, SS, and SP reflections. We demonstrate that PP amplitude data can be invertéd for four parameters (three velocity ratios and the density ratio), although joint inversion of PP and PS reflections can greatly improve the robustness. The algorithm is superior to conventional approximations in that it works for any large (decreasing) contrasts at any large angles; it is accurate and can invert for more parameters.

Keywords
AVA
joint inversion
reflection coefficients
References
  1. Aki, K.T. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods, W.H.Freeman, San Francisco.336 ZHU, MCMECHAN & GONG
  2. Alhussain, M., Gurevich B. and Urosevic, M., 2008. Experimental verification of spherical waveeffect on the AVO response and implications for three-term inversion. Geophysics, 73(2):C7-Cl2.
  3. Arntsen, B., Kritski, A., Ursin, B. and Amundsen, L., 2013. Shot-profile true amplitudecrosscorrelation imaging condition. Geophysics, 78(4): 1-S231.
  4. Beaudoin, G., 2010. Imaging the invisible - BP’s path to OBS nodes. Expanded Abstr., 80th Ann.Internat. SEG Mtg., Denver: 3734-3739.
  5. Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of planelongitudinal and transverse waves. Geophys. Prosp., 9: 482-502.
  6. Cerveny, V., Molotkov, I.A. and Pseneik, 1977. Ray Method in Seismology. Charles UniversityPress, Prague.
  7. Coleman, T.F. and Li, Y., 1994. On the convergence of interior-reflective Newton methods fornonlinear minimization subject to bounds. Mathemat. Program., 67: 189-224.
  8. Deng, F. and McMechan, G.A., 2007. True-amplitude prestack depth migration, Geophysics, 72(3):5-S166.
  9. Kelly, K.R., Ward, R.W., Treitel, S. and Alford, R.M., 1976. Synthetic seismograms: Afinite-difference approach. Geophysics, 41: 2-27.
  10. Kennett, B.L.N., 1981. Seismic waves in a stratified half space - II. Theoretical seismograms.Geophys. J. Roy. Astron. Soc., 61: 1-10.
  11. Lehocki, I., Avseth, P. and Veggeland, T., 2013. Exact Zoeppritz-inversion of Vp/Vs ratio -application to a Barents Sea gas reservoir. Extended Abstr., 75th EAGE Conf., London: ThP15 05.
  12. Ma, J., Fu, G.P., Geng, J. and Guo, T.L., 2013. Full Zoeppritz equation-based elastic parameters
  13. Bayesian generalized linear inversion. Extended Abstr., 75th EAGE Conf., London: Tu 10
  14. Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for Marmousi.The Leading Edge, 25: 156-166.
  15. Moldoveanu, N., Ji, Y. and Beasley, C., 2012. Multivessel coil shooting acquisition withsimultaneous sources. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas,doi: 10.1190/segam2012-1526.1
  16. Russell, B.R., Gray, D. and Hampson, D.P., 2012. Linearized AVO and poroelasticity. Geophysics,76(3): C19-C29.
  17. Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
  18. Skopintseva, L., Ayzenberg, M., Landrg, M., Nefedkina, T. and Aizenberg, A.M., 2011.
  19. Long-offset AVO inversion of PP reflections from plane interfaces using effective reflectioncoefficients. Geophysics, 76: C65-C79.
  20. Ursenbach, C.P., 2002. Optimal Zoeppritz approximations. Expanded Abstr., 72nd Ann. Internat.SEG Mtg., Salt Lake City: 1897-1900.
  21. Ursin, B. and Dahl, T., 1992. Seismic reflection amplitudes. Geophys. Prosp., 40: 483-512.
  22. Ursin, B. and Tjaland, E., 1996. The information content of the elastic reflection matrix. Geophys.J. Internat., 125: 214-228.
  23. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite differencemethod. Geophysics, 51: 889-901.
  24. Wang, Y., 1999. Approximation to the Zeoppritz equations and their use in AVO analysis.Geophysics, 64: 1920-1927.
  25. Zhi, L., Chen, S. and Li, X., 2013. Joint AVO inversion of PP and PS waves using exact Zoeppritzequation. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 457-461.
  26. Zhu, X. and McMechan, G.A., 2012a. AVO inversion using the Zoeppritz equation for PPreflections. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.doi: 10.1190/segam2012-0160.1
  27. Zhu, X. and McMechan, G.A., 2012b. Elastic inversion of near- and post-critical reflections usingphase variation with angle. Geophysics, 77(4): R149-R159.
  28. Zhu, X. and McMechan, G.A., 2014. Amplitude and phase versus angle for elastic wide-anglereflections in the 7-p domain. Geophysics, 79(4): submitted.LINEARIZED AVA INVERSION 337
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing