ARTICLE

Application of frequency-dependent AVO inversion to hydrocarbon detection

SHUANGQUAN CHEN1,2,3 XIANG-YANG LI1,2,3 XIAOYANG WU3
Show Less
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P.R. China.,
2 CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, P.R. China.,
3 British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, U.K.,
JSE 2014, 23(3), 241–264;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, S.-Q., Li, X.-Y. and Wu, X.-Y., 2014. Application of frequency-dependent AVO inversion to hydrocarbon detection. Journal of Seismic Exploration, 23: 241-264. Seismic wave dispersion results mainly from fluid flow in a heterogeneous porous medium, and reflectivity at the interface of a dispersive medium is frequency-dependent. In theoretical rock physics, reflectivity can be expressed as a function of velocities which are frequency-dependent, and the expressions of prestack Zoeppritz equations are also frequency-dependent. In this paper, we develop a frequency-dependent AVO inversion (FDAI) method that is based entirely on the frequency-dependent seismic response attributes of prestack seismic data, and apply it to a hydrocarbon detection case study. Analysis of elastic, frequency-dependent media using synthetic methods demonstrates improved hydrocarbon detection by FDAI compared to conventional AVO inversion. Application to a real field seismic dataset indicates that seismic wave dispersion resulting from the hydrocarbon inclusions can be detected using the frequency-dependent inversion method. In particular, for reservoir characterization and hydrocarbon detection, dispersion characteristics due to wave-induced fluid flow in the porous reservoir can be interpreted advantageously using the FDAI method.

Keywords
frequency-dependent
AVO inversion
dispersion
hydrocarbon detecting
time-frequency decomposition
References
  1. Arntsen, B. and Carcione, J.M., 2001. Numerical simulation of the Biot slow wave in
  2. water-saturated Nivelsteiner sandstone. Geophysics, 66: 890-896.
  3. Aki, K. and Richards, P.G., 1980. Quantitative Seismology, Theory and Methods, Vol. 1. W.H.
  4. Freeman and Co., San Francisco.
  5. Batzle, M., Hofmann, R., Han, D. and Castagna, J., 2001. Fluid sand frequency dependent seismic
  6. velocity of rocks. The Leading Edge, 20: 168-171.
  7. Batzle, M., Han, L.D. and Hofmann, R., 2006. Fluid mobility and frequency-dependent seismic
  8. velocity-direct measurements. Geophysics, 71: N1-N9.
  9. Biot, M.A., 1956a. Theory of propagation of elastic waves in fluid-saturated porous solid. I.
  10. Low-frequency range. J. Acoust. Soc. Am., 28: 168-178.
  11. Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II.
  12. Higher frequency range. J. Acoust. Soc. Am., 28: 179-191.
  13. Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl.
  14. Phys., 33: 1482-1498.
  15. Carcione, J.M., 2001. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and
  16. Porous Media. Pergamon Press, Oxford. .
  17. Carcione, J.M. and Picotti, S., 2006. P-wave seismic attenuation by slow wave diffusion: Effects
  18. of inhomogeneous rock properties. Geophysics, 71: 1-8.
  19. Castagna, J.P., Sun, S. and Siegfried, R.W., 2003. Instantaneous spectral analysis: detection of
  20. low-frequency shadows associated with hydrocarbons. The Leading Edge, 22: 120-127.
  21. Chapman, M., 2003. Frequency dependent anisotropy due to mesoscale fractures in the presence of
  22. equant porosity. Geophys. Prosp., 51: 369-379.
  23. Chapman, M., Lin, E. and Li, X.-Y., 2006. The influence of fluid-sensitive dispersion and
  24. attenuation on AVO analysis. Geophys. J. Internat., 167: 89-105.
  25. Chen, S.Q., Li, X.-Y. and Wang, S.X., 2012. The analysis of frequency-dependent characteristics
  26. for fluid detection: a physical model experiment. Appl. Geophys., 9: 195-206.
  27. Dvorkin, J., Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks. Geophysics, 60:
  28. 97-107.
  29. Ebrom, D., 2004. The low-frequency gas shadow on seismic sections. The Leading Edge, 23: 772.
  30. Gassmann, F., 1951. Uber die Elastizitat poroser Medien. Veirteljahrsschr. Naturforsch. Gesellsch.
  31. Ziirich, 96: 1-23.
  32. Goloshubin, G.M. and Korneev, V.A., 2000. Seismic low-frequency effects from fluid-saturated
  33. reservoir. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary: 976-979.
  34. Gurevich, B., Zyrianov, V.B. and Lopatnikov, S.L., 1997. Seismic attenuation in finely layered
  35. porous rocks: Effects of fluid flow and scattering. Geophysics, 62: 319-324.
  36. Herrmann, F.J., 1997. A Scaling Media Representation, a Discussion on Well-logs, Fractals and
  37. Waves. Ph.D. thesis, Delft University of Technology, Delft.
  38. 262 CHEN, LI & WU
  39. Innanen, K., 2011. Inversion of the seismic AVF/AVA signatures of highly attenuative targets.
  40. Geophysics, 76: RI-R14.
  41. Jakobsen, M. and Chapman, M., 2009. Unified theory of global flow and squirt flow in cracked
  42. porous media. Geophysics, 74: WA65-WA76.
  43. Johnson, D.L., 2001. Theory of frequency dependent acoustics in patchy saturated porous media.
  44. J. Acoust. Soc. Am., 110: 682-694.
  45. Keho, T., Lemanski, S., Ripple, R. and Tambunan, B., 2001. The AVO hodogram: Using
  46. polarization to identify anomalies. The Leading Edge, 20: 1214-1224.
  47. Korneev, V.A., Goloshubin, G.M., Daley, T.M. and Silin, D.B., 2004. Seismic low-frequency
  48. effects in monitoring fluid-saturated reservoirs. Geophysics, 69: 522-532.
  49. Li, X.-Y. and Zhang, Y., 2011. Seismic reservoir characterization: How can multicomponent data
  50. help? J. Geophys. Engin., 8: 123-141.
  51. Liner, C.L., Bell, L. and Verm, R., 2009. Direct imaging of group velocity dispersion curves in
  52. shallow water. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3317-3321.
  53. Liu, E., Queen, J.H., Li, X.Y., Maultzsch, M.S., Lynn, H.B. and Chesnokov, E.M., 2003.
  54. Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at
  55. Bluebell-Altamont field, Utah. J. Appl. Geophys., 54: 319-333.
  56. Liu, E., Chapman, M., Loizou, N. and Li, X., 2006. Applications of spectral decomposition for
  57. AVO analyses in the west of Shetland. Expanded Abstr., 76th Ann. Internat. SEG Mtg.,
  58. New Orleans: 279-283.
  59. Liu, L.F., Cao, S.Y. and Wang, L., 2011. Poroelastic analysis of frequency-dependent
  60. amplitude-versus-offset variations. Geophysics, 76: C31-C40.
  61. Mallat, $.G. and Hwang, W.L., 1992. Singularity detection and processing with wavelets. IEEE
  62. Trans. Inform. Theory, 38: 617-643.
  63. Marmalyevsky, N. and Roganov, Y., 2006. Frequency depending AVO for a gas-saturated
  64. periodical thin-layered stack. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans:
  65. 274-278.
  66. Mochizuki, S., 1982. Attenuation in partially saturated rocks. J. Geophys. Res., 87: 8598-8604.
  67. Miller, T.M. and Gurevich, B., 2004. One-dimensional random patchy saturation model for velocity
  68. and attenuation in porous rocks. Geophysics, 69: 1166-1172.
  69. Odebeatu, E., Zhang, Z., Chapman, M., Liu, E. and Li, X-Y., 2006. Application of spectral
  70. decomposition to detection of dispersion anomalies associated with gas saturation. The
  71. Leading Edge, 25: 206-210. i
  72. Parra, J.O., 2000. Poroelastic modei to relate seismic wave attenuation and dispersion to
  73. permeability anisotropy. Geophysics, 65: 202-210.
  74. Pride, S.R., Berryman, J.G. and Harris, J.M., 2004. Seismic attenuation due to wave induced flow.
  75. J. Geophys. Res., 109 (B1): B01201.
  76. Ren, H., Goloshubin, G. and Hilterman, F.J. 2008. Amplitude-versus-frequency variations in thinly
  77. layered porous rocks. Expanded Abstr., 78th Ann. Internat, SEG Mtg., Las Vegas:
  78. 1744-1746.
  79. Ren, H., Goloshubin, G. and Hilterman, F.J., 2009. Poroelastic analysis of
  80. amplitude-versus-frequency variations. Geophysics, 74: 01-08.
  81. Shapiro, S.A. and Miller, T.M., 1999. Seismic signatures of permeability in heterogeneous porous
  82. media. Geophysics, 64: 99-103.
  83. Shuey, R., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
  84. Smith, G.C. and Gidlow, P.M., 1987. Weighted stacking for rock property estimation and detection
  85. of gas. Geophys. Prosp., 35: 993-1014.
  86. Wapenaar, C.P.A., 1998. Seismic reflection and transmission coefficients of a self-similar interface.
  87. Geophys. J. Internat., 135: 585-594.
  88. Wapenaar, C.P.A., van Wijngaarden, A., van Geloven, W. and van der Leij, T., 1999. Apparent
  89. AVA effects of fine layering. Geophysics, 64: 1939-1948.
  90. Wapenaar ,C.P.A., Thorbecke, J. and Draganov, D., 2004. Relations between reflection and
  91. transmission responses of three-dimensional inhomogeneous media. Geophys. J. Internat.,
  92. 156: 179-194,
  93. FREQUENCY-DEPENDENT AVO INVERSION 263
  94. White., J.E., 1975. Computed seismic speed sand attenuation in rocks with partial gas saturation.
  95. Geophysics, 40: 224-232.
  96. White, J.E., 1986. Underground Sound: Applications of Seismic Waves. Geophysical Press Ltd.,
  97. Amsterdam.
  98. White, J.E., Mikhaylova, G. and Lyakhovitskiy, F.M., 1975. Low-frequency seismic waves in
  99. fluid-saturated layered rocks. Izvestija (Russian Academy of Sciences), Phys. Solid Earth,
  100. 11: 654-659.
  101. Wilson, A., Chapman, M. and Li, X.-Y., 2009. Frequency-dependent AVO inversion. Expanded
  102. Abstr., 79th Ann. Internat. SEG Mtg., Houston, 28: 341-345.
  103. Wolf, A., 1937. The reflection of elastic waves from transition layers of variable velocity.
  104. Geophysics, 2: 357-363.
  105. Wu, X., Chapman, M., Wilson, A. and Li, X.-Y., 2010. Estimating seismic dispersion from
  106. pre-stack data using frequency-dependent AVO inversion. Expanded Abstr., 80th Ann.
  107. Internat. SEG Mtg., Denver, 29: 341-345.
  108. Wu, X., Chapman, M. and Li, X.-Y., 2012. Frequency-dependent AVO attribute: Theory and
  109. example. First Break, 30: 67-72.
  110. Xu, D., Wang, Y., Gan, Q. and Tang, J., 2011. Frequency-dependent seismic reflection coefficient
  111. for discriminating gas reservoirs. J. Geophys. Engin., 8: 508.
  112. Xu, Y. and Chopra, S., 2007. Improving AVO fidelity by NMO stretching and offset-dependent
  113. tuning corrections. The Leading Edge, 26: 1548-1551.
  114. Yoo, S. and Gibson, R.L., 2005. Frequency dependent AVO analysis after target oriented stretch
  115. correction. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston, 24: 293-296.
  116. Zhang, S., Yin, X. and Zhang, G., 2011. Dispersion-dependent attribute and application in
  117. hydrocarbon detection. J. Geophys. Engin., 8: 498-507.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing