Cite this article
2
Download
44
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Fuzzy inference system design for multiple attenuation with quantitative validation criteria using Auto Correlation Energy Ratio (ACER)

M. ZAREI H. HASHEMI M. BAGHERI
Show Less
Institute of Geophysics, University of Tehran, Tehran, Iran.,
JSE 2023, 32(3), 205–227;
Submitted: 8 December 2022 | Accepted: 22 March 2023 | Published: 1 June 2023
© 2023 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zarei, M., Hashemi, H. and Bagheri, M., 2023. Fuzzy inference system design for multiple attenuation with quantitative validation criteria using Auto Correlation Energy Ratio (ACER). Journal of Seismic Exploration, 32: 205-227. Many methods for multiple attenuation are based on numerous signal properties for years. Each multiple attenuation technique has advantages and disadvantages and is effective for a particular type of multiples. Recently, fuzzy logic has shown wide application in seismic processing and interpretation. A method for multiple attenuation using Radon transform by fuzzy inference system is introduced to run the multiple attenuations step adaptively and automatically. We applied an intelligent adaptive approach based on fuzzy logic to attenuate multiples in each super common midpoint gather automatically and find good results compared to the manual defined mute function in the radon domain. Applying the new method to synthetic and real data has shown the power of the proposed method for multiple attenuations in the area with substantial two-way travel time differences that occurred due to the different water depths. A quantitative validation criterion named Auto Correlation Energy Ratio (ACER) is presented to guarantee that the final result in multiple attenuations using the new proposed approach is correct.

Keywords
multiple attenuation
fuzzy logic
Radon transform
marine data
water depth
References
  1. Aminzadeh, F., 1991. Expert Systems in Exploration. SEG, Tulsa, OK.
  2. Aminzadeh, F. and Wilkinson, D., 2004. Soft computing for qualitative and quantitativeseismic object and reservoir property prediction Part 2: Fuzzy logicapplications. First Break, 22: 69-78.
  3. Bezdek, J.C., Ehrlich, R. and Full, W., 1984. FCM - The fuzzy C-means clusteringalgorithm.Comput. Geosci., 10: 191-203.
  4. Chongjin, Z., Peng, Y. and Jun. G., 2020. Integrated interpretation of multi-geophysicalinversion results using guided fuzzy C-means clustering. Internat. J. Earth Sci.Geophys., 6: 035.
  5. Coppens, F., 1991. A rule-based system for the determination of seismic velocities,.Expert Syst. Explor.: 33-58.
  6. Crucelis, L. and Milagrosa, A., 2009. Automatic first break picking in VSP data usingfuzzy logic systems. 11th Internat. Congr. Brazil. Geophys. Soc., Salvador,Bahia, Brazil, 24-28 August.
  7. Finol, J.D. and Jing. X., 2002. Permeability prediction in shaly formations: The fuzzymodeling approach. Geophysics, 67: 817-829.
  8. Gao, L., Jiang, Z.Y. and Min, F., 2019. First-arrival travel times picking through slidingwindows and fuzzy C-means. Mathematics, 7: 221.
  9. Guillaume, S., 2001. Designing fuzzy inference systems from data: an interpretabilityorientedreview. IEEE Transact. Fuzzy Syst., 9: 426-443.
  10. Hadiloo, S., Hashemi, H. and Beiranvand, B., 2018. Comparison between unsupervisedand supervised fuzzy clustering method in interactive mode to obtain the bestresult for extract subtle patterns from seismic facies maps. Geopersia, 8: 27-
  11. Hajian, A., Kimiaeefar, R. and Siahkoohi, H., 2016. Random noise attenuation inreflection seismic data using Adaptive Neuro-fuzzy Interference System(ANFIS). Extended Abstr., 78th EAGE Conf., Vienna.
  12. Hampson, D., 1986. Inverse velocity stacking for multiple elimination. Canad. J. Explor.Geophys., 22: 44-55.
  13. Hashemi, H., 2018. Seismic pattern recognition: automation of processing andinterpretation. Proc. 18th Iran. Geophys. Conf., Tehran: 1226-1228.
  14. Hashemi, H., Javaherian, A. and Babuska, R, 2008. A semi-supervised method to detectseismic random noise with fuzzy GK clustering. J. Geophys. Engineer., 5:
  15. Janakiraman, K.K. and Konno, M., 2002. Cross‐borehole geological interpretation modelbased on a fuzzy neural network and geotomography. Geophysics, 67: 1177-
  16. Kneib, G. and Bardan, V., 1994. Targeted multiple attenuation. Extended Abstr., 56thEAGE Conf., Vienna: H034.
  17. Li, T., Du, Y. and Yuan, Y., 2019. Use of variable fuzzy clustering to quantify thevulnerability of a power grid to earthquake damage. Sustainability, 11: 5633.
  18. Li, Y. and Sun, J., 2016. 3D magnetization inversion using fuzzy C-means clusteringwith application to geology differentiation. Geophysics, 81(5): J61-J78.
  19. Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.Geophysics, 17: 927-938.
  20. Peacock, K. and Treitel, S., 1969. Predictive deconvolution - Theory and practice.Geophysics, 34: 155-169.
  21. Schneider, W., Prince, E. and Giles, B., 1965. A new data processing technique formultiple attenuation exploiting differential moveout. Geophysics, 30: 348-
  22. Sheng, C., Zhen, Z. and Jun, G., 2014. A marine case analysis of multiple suppression.
  23. Internat. Geophys. Conf., Beijing, April: 261-264.
  24. Singh, A., Sharma, S.P., Akca, I. and Baranwal, V.C., 2018. Fuzzy constrained Lp-norminversion of direct current resistivity data. Geophysics, 83(1): E11-E24.
  25. Sun, J. and Li, Y., 2015. Multi-domain petrophysically constrained inversion and geologydifferentiation using guided fuzzy C-means clustering. Geophysics, 80(1):ID1-ID18.
  26. Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A., 1992. Adaptive surface-relatedmultiple elimination. Geophysics, 57: 1166-1177.
  27. Xiao, C., Bancroft, J., Brown, R.J. and Cao, Z., 2003. Multiple Suppression: a literaturereview, CREWES Research Rep., 15.
  28. Yilmaz, Ö., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.
  29. Yuza, N.H., Nainggolan, T.B. and Manik, H., 2020. Multiple attenuation methods inshort-offset 2D marine seismic data: a case study in Cendrawasih Bay. IOPConf. Series Earth Environment. Sci.: 429.
  30. Zadeh, L., 1965. Fuzzy sets. Informat. Control, 8: 338-353.
  31. Zarei, M. and Hashemi, H., 2019. Edge detector Radon transform for seismic multipleattenuation - 2nd Conf. Arab. J. Geosci., Tunisia, November.
  32. Zarei, M. and Hashemi, H., 2021. Primary-multiple separation technique based on imageRadon transform. Arab. J. Geosci., 14: 462.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing