Cite this article
1
Download
5
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Fuzzy inference system design for multiple attenuation with quantitative validation criteria using Auto Correlation Energy Ratio (ACER)

M. ZAREI H. HASHEMI M. BAGHERI
Show Less
Institute of Geophysics, University of Tehran, Tehran, Iran.,
JSE 2023, 32(3), 205–227;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zarei, M., Hashemi, H. and Bagheri, M., 2023. Fuzzy inference system design for multiple attenuation with quantitative validation criteria using Auto Correlation Energy Ratio (ACER). Journal of Seismic Exploration, 32: 205-227. Many methods for multiple attenuation are based on numerous signal properties for years. Each multiple attenuation technique has advantages and disadvantages and is effective for a particular type of multiples. Recently, fuzzy logic has shown wide application in seismic processing and interpretation. A method for multiple attenuation using Radon transform by fuzzy inference system is introduced to run the multiple attenuations step adaptively and automatically. We applied an intelligent adaptive approach based on fuzzy logic to attenuate multiples in each super common midpoint gather automatically and find good results compared to the manual defined mute function in the radon domain. Applying the new method to synthetic and real data has shown the power of the proposed method for multiple attenuations in the area with substantial two-way travel time differences that occurred due to the different water depths. A quantitative validation criterion named Auto Correlation Energy Ratio (ACER) is presented to guarantee that the final result in multiple attenuations using the new proposed approach is correct.

Keywords
multiple attenuation
fuzzy logic
Radon transform
marine data
water depth
References
  1. Aminzadeh, F., 1991. Expert Systems in Exploration. SEG, Tulsa, OK.
  2. Aminzadeh, F. and Wilkinson, D., 2004. Soft computing for qualitative and quantitative
  3. seismic object and reservoir property prediction Part 2: Fuzzy logic
  4. applications. First Break, 22: 69-78.
  5. Bezdek, J.C., Ehrlich, R. and Full, W., 1984. FCM - The fuzzy C-means clusteringalgorithm.
  6. Comput. Geosci., 10: 191-203.
  7. Chongjin, Z., Peng, Y. and Jun. G., 2020. Integrated interpretation of multi-geophysical
  8. inversion results using guided fuzzy C-means clustering. Internat. J. Earth Sci.
  9. Geophys., 6: 035.
  10. Coppens, F., 1991. A rule-based system for the determination of seismic velocities,.
  11. Expert Syst. Explor.: 33-58.
  12. Crucelis, L. and Milagrosa, A., 2009. Automatic first break picking in VSP data using
  13. fuzzy logic systems. 11th Internat. Congr. Brazil. Geophys. Soc., Salvador,
  14. Bahia, Brazil, 24-28 August.
  15. Finol, J.D. and Jing. X., 2002. Permeability prediction in shaly formations: The fuzzy
  16. modeling approach. Geophysics, 67: 817-829.
  17. Gao, L., Jiang, Z.Y. and Min, F., 2019. First-arrival travel times picking through sliding
  18. windows and fuzzy C-means. Mathematics, 7: 221.
  19. Guillaume, S., 2001. Designing fuzzy inference systems from data: an interpretabilityoriented
  20. review. IEEE Transact. Fuzzy Syst., 9: 426-443.
  21. Hadiloo, S., Hashemi, H. and Beiranvand, B., 2018. Comparison between unsupervised
  22. and supervised fuzzy clustering method in interactive mode to obtain the best
  23. result for extract subtle patterns from seismic facies maps. Geopersia, 8: 27-
  24. Hajian, A., Kimiaeefar, R. and Siahkoohi, H., 2016. Random noise attenuation in
  25. reflection seismic data using Adaptive Neuro-fuzzy Interference System
  26. (ANFIS). Extended Abstr., 78th EAGE Conf., Vienna.
  27. Hampson, D., 1986. Inverse velocity stacking for multiple elimination. Canad. J. Explor.
  28. Geophys., 22: 44-55.
  29. Hashemi, H., 2018. Seismic pattern recognition: automation of processing and
  30. interpretation. Proc. 18th Iran. Geophys. Conf., Tehran: 1226-1228.
  31. Hashemi, H., Javaherian, A. and Babuska, R, 2008. A semi-supervised method to detect
  32. seismic random noise with fuzzy GK clustering. J. Geophys. Engineer., 5:
  33. Janakiraman, K.K. and Konno, M., 2002. Cross‐borehole geological interpretation model
  34. based on a fuzzy neural network and geotomography. Geophysics, 67: 1177-
  35. Kneib, G. and Bardan, V., 1994. Targeted multiple attenuation. Extended Abstr., 56th
  36. EAGE Conf., Vienna: H034.
  37. Li, T., Du, Y. and Yuan, Y., 2019. Use of variable fuzzy clustering to quantify the
  38. vulnerability of a power grid to earthquake damage. Sustainability, 11: 5633.
  39. Li, Y. and Sun, J., 2016. 3D magnetization inversion using fuzzy C-means clustering
  40. with application to geology differentiation. Geophysics, 81(5): J61-J78.
  41. Mayne, W.H., 1962. Common reflection point horizontal data stacking techniques.
  42. Geophysics, 17: 927-938.
  43. Peacock, K. and Treitel, S., 1969. Predictive deconvolution - Theory and practice.
  44. Geophysics, 34: 155-169.
  45. Schneider, W., Prince, E. and Giles, B., 1965. A new data processing technique for
  46. multiple attenuation exploiting differential moveout. Geophysics, 30: 348-
  47. Sheng, C., Zhen, Z. and Jun, G., 2014. A marine case analysis of multiple suppression.
  48. Internat. Geophys. Conf., Beijing, April: 261-264.
  49. Singh, A., Sharma, S.P., Akca, I. and Baranwal, V.C., 2018. Fuzzy constrained Lp-norm
  50. inversion of direct current resistivity data. Geophysics, 83(1): E11-E24.
  51. Sun, J. and Li, Y., 2015. Multi-domain petrophysically constrained inversion and geology
  52. differentiation using guided fuzzy C-means clustering. Geophysics, 80(1):
  53. ID1-ID18.
  54. Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A., 1992. Adaptive surface-related
  55. multiple elimination. Geophysics, 57: 1166-1177.
  56. Xiao, C., Bancroft, J., Brown, R.J. and Cao, Z., 2003. Multiple Suppression: a literature
  57. review, CREWES Research Rep., 15.
  58. Yilmaz, Ö., 1989. Velocity-stack processing. Geophys. Prosp., 37: 357-382.
  59. Yuza, N.H., Nainggolan, T.B. and Manik, H., 2020. Multiple attenuation methods in
  60. short-offset 2D marine seismic data: a case study in Cendrawasih Bay. IOP
  61. Conf. Series Earth Environment. Sci.: 429.
  62. Zadeh, L., 1965. Fuzzy sets. Informat. Control, 8: 338-353.
  63. Zarei, M. and Hashemi, H., 2019. Edge detector Radon transform for seismic multiple
  64. attenuation - 2nd Conf. Arab. J. Geosci., Tunisia, November.
  65. Zarei, M. and Hashemi, H., 2021. Primary-multiple separation technique based on image
  66. Radon transform. Arab. J. Geosci., 14: 462.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing