Full waveform inversion of reflected seismic data

Xu, S., Chen, F., Lambaré, G. and Zhang, Y., 2013. Full waveform inversion of reflected seismic data. Journal of Seismic Exploration, 22: 449-462. Full waveform inversion has been widely used to build shallow high resolution velocity models. Successful inversion requires seismic data with reliable refracted waves and low frequencies. In this paper, we revisit full waveform inversion theory and highlight a method to relax the dependence of inversion on low frequency reflections. The method can update the long wavelength components of the velocity model by using the reflected arrivals, even when the low frequency components of seismic data are absent in the input. Our approach involves a non-linear iterative relaxation approach where short and long wavelength components of the velocity model are updated alternatively. The approach still targets at matching observed data with simulated data, except the later are computed through a demigration process using the migrated images as reflectivity model. The overall workflow for the inversion in this paper is similar to the algorithm of migration based travel time waveform inversion proposed by Chavent et al. (1994) (the short wave length components of the velocity models are just replaced by a reflectivity distribution). We derive the inversion equations using Born’s approximation and numerically analyze the Fréchet derivatives of the inversion. As a result we propose an efficient methodology taken advantage of the know how about preserved amplitude migration. At the end, we present a preliminary 2D application to a Gulf of Mexico conventional streamer dataset.
- Albertin, U., Sava, P., Etgen, J. and Maharramov, M., 2006. Adjoint wave-equation velocity
- analysis. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 3345-3349.
- Albertin, U., 2011. An improved gradient computation for adjoint wave-equation reflection
- tomography. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 3969-3973.
- Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem by inversion of a
- causal generalized Radon transform. J. Math. Phys., 26: 99-108.
- Billette, F. and Lambaré, G., 1998. Velocity macro-model estimation from seismic reflection data
- by stereotomography. Geophys. J. Internat., 135: 671-680.
- Bishop, T.N., Bube, K.P., Cutler, R.T., Langan, R.T., Love, P.L., Resnick, T.R., Shuey, R.T.,
- Spinder, D.A. and Wyld, H.W., 1985. Tomographic determination of velocity and depth
- in laterally varying media. Geophysics, 50: 903-923.
- Bleistein, N., 1987. On the imaging of reflectors in the Earth. Geophysics, 52: 931-942.
- Chavent, G., Clément, F. and Gémez, S., 1994. Automatic determination of velocities via
- migration-based traveltime waveform inversion: A synthetic data example. Expanded Abstr.,
- 64th Ann. Internat. SEG Mtg., Los Angeles: 1179-1182.
- Choi, Y. and Alkhalifah, T., 2011. Application of encoded multi-source waveform inversion to
- marine-streamer acquisition based on the global correlation. Extended Abstr., 73rd EAGE
- Conf., Vienna: F026.
- Choi, Y., Min, D.J. and Shin, C., 2008. Frequency-domain full waveform inversion using the new
- pseudo-Hessian matrix: Experience of elastic Marmousi-2 synthetic data. Bull. Seismol. Soc.
- Am., 98: 2402-2415.
- Clément, F., Chavent, G. and Gémez, S., 2001. Migration-based traveltime waveform inversion of
- 2D simple structures: A synthetic example. Geophysics, 66: 845-860.
- Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic
- waveforms: Numerical results. Geophysics, 51: 1387-1403.
- Guillaume, P., Lambaré, G., Sioni, S., Carotti, D., Depr, P., Culianez, G., Montel, J.P.,
- Mitouard, P., Depagne, S., Frehers, S. and Vosberg, H., 2011. Geologically consistent
- velocities obtained by high definition tomography. Expanded Abstr., 81st Ann. Internat. SEG
- Mtg., San Antonio: 4061-4065.
- Han, W., Xu, S., 2011. High resolution velocity model for imaging complex structures. Extended
- Abstr., 73rd EAGE Conf., Vienna: B010.
- Hu, L. and Zhou, J., 2011. Velocity update using high resolution tomography in Santos Basin,
- Brazil. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 3974-3978.
- Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. Proc.
- Internat. Conf. 'Inverse Scattering, Theory and Applications', Tulsa, OK. SIAM Publishers,
- Philadelphia.
- Lambaré, G., 2008. Stereotomography. Geophysics, 73: VE25-VE34.
- Lindsey, J.P., 1960. Elimination of seismic ghost reflections by means of a linear filter. Geophysics,
- 25: 130-140.
- Liu, J. and Han, W., 2010. Automatic event picking and tomography on 3D RTM angle gathers.
- Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 4263-4268.
- Liu, Z. and Bleistein, N., 1995. Migration velocity analysis: Theory and an iterative algorithm.
- Geophysics, 60: 142-153.
- Luo, Y. and Schuster, G.T., 1991. Wave-equation traveltime inversion. Geophysics, 56: 645-653.
- Ma, Y. and Hale, D., 2011. A projected Hessian matrix for full waveform inversion. Expanded
- Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2401-2405.
- Operto, S., Xu, S. and Lambaré, G., 2000. Can we quantitatively image complex structures with
- rays? Geophysics, 65: 1223-1238.
- Plessix, R.-E., de Roeck, Y.H. and Chavent, G., 1999. Waveform inversion of reflection seismic
- data for kinematic parameters by local optimization. Siam J. on Scient. Comput., 20:
- 1033-1052.
- 462 XU, CHEN, LAMBARE & ZHANG
- Plessix, R.-E. and Rynja, H., 2010. VTI full waveform inversion: a parameterization study with a
- narrow azimuth streamer data example. Expanded Abstr., 80th Ann. Internat. SEG Mtg.,
- Denver: 962-966.
- Plessix, R.-E., Baeten, G., de Maag, J.W., Klaassen, M., Rujie, Z. and Zhifei, T., 2010.
- Application of acoustic full waveform inversion to a low-frequency large-offset land data set.
- Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 930-934.
- Polyanin, A.D. and Manzhirov, A.V., 1998, Handbook of Integral Equations. CRC Press, Boca
- Raton, FL.
- Pratt, R., Shin, C. and Hicks, G., 1998. Gauss-Newton and full Newton methods in frequency-space
- seismic waveform inversion. Geophys. J. Internat., 13: 341-362.
- Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
- Multiscale imaging of complex structures from multifold wide-aperture seismic data by
- frequency-domain full waveform tomography: application to a thrust belt. Geophys. J.
- Internat., 159: 1032-1056.
- Sava, P.C., Biondi, B. and Etgen, J., 2005. Wave-equation migration velocity analysis by focusing
- diffractions and reflections. Geophysics, 70: U19-U27.
- Shen P. and Symes, W.W., 2008. Automatic velocity analysis via shot profile migration.
- Geophysics, 73: VE49-VE59.
- Siliqi, R., Herrmann, P., Prescott, A. and Capar, L., 2007. High-order RMO picking using
- uncorrelated parameters. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio:
- 2772-2776.
- Sirgue, L., Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy for selecting
- temporal frequencies. Geophysics, 69: 231-248.
- Sirgue, L., Barkved, O.I., Dellinger, J., Etgen, J., Albertin, U. and Kommedal, J.H., 2010.
- Full-waveform inversion: the next leap forward in imaging at Valhall. First Break, 28:
- 65-70.
- Soubaras, R. and Gratacos, B., 2007. Velocity model building by semblance maximization of
- modulated-shot gathers. Geophysics, 72: U67-U73.
- Symes, W.W. and Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization.
- Geophysics, 56: 654-663.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Virieux, J. and Operto, S., 2009. An overview of full waveform inversion in exploration geophysics.
- Geophysics, 74(6): WCC127-WCC152.
- Woodward, M.J., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A decade of
- tomography. Geophysics, 73(5): VES-VE11.
- Xu, S., Chauris, H., Lambaré, G. and Noble, M., 2001. Common angle migration: a strategy for
- imaging complex media. Geophysics, 66: 1877-1894.
- Xu, S., Zhang, Y. and Tang, B., 2011. 3D angle gathers from reverse time migration. Geophysics,
- 76(2): S77-S92. doi: 10.1190/1.3536527
- Zhang, S., Schuster, G. and Luo, Y., 2011. Wave-equation reflection traveltime inversion.
- Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2705-2710.
- Zhang, Y., Xu, S., Bleistein, N. and Zhang, G., 2007. True-amplitude, angle-domain,
- common-image gathers from one-way wave-equation migrations. Geophysics, 72: S49-S58.
- Zhang, Y. and Wang, D., 2009. Traveltime information-based wave-equation inversion. Geophysics,
- 74(6): WCC27-WCC36. i
- Zhang, Y., Duan, L. and Roberts, G., 2013. True amplitude reverse time migration: from
- reflectivity to velocity and impedance perturbations. Extended Abstr., 75th EAGE Conf.,
- London.
- Zhou, H., Gray, S.H., Young, J., Pham, D. and Zhang, Y., 2003. Tomographic residual curvature
- analysis: The process and its components. Expanded Abstr., 73rd Ann. Internat. SEG Mtg.,
- Dallas: 666-669.