ARTICLE

Full waveform inversion of reflected seismic data

SHENG XU1* FENG CHEN1* GILLES LAMBARÉ2 YU ZHANG3
Show Less
1 CGG, 10300 Town Park Drive, Houston, TX 77072, U.S.A.,
2 CGG, 27 avenue Carnot, 91341 Massy-Cedex, France,
3 CGG, Crompton Way Manor Royal Estate, RH10 9QN Crawley, U.K.,
JSE 2013, 22(5), 449–462;
Submitted: 26 February 2013 | Accepted: 29 July 2013 | Published: 1 November 2013
© 2013 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Xu, S., Chen, F., Lambaré, G. and Zhang, Y., 2013. Full waveform inversion of reflected seismic data. Journal of Seismic Exploration, 22: 449-462. Full waveform inversion has been widely used to build shallow high resolution velocity models. Successful inversion requires seismic data with reliable refracted waves and low frequencies. In this paper, we revisit full waveform inversion theory and highlight a method to relax the dependence of inversion on low frequency reflections. The method can update the long wavelength components of the velocity model by using the reflected arrivals, even when the low frequency components of seismic data are absent in the input. Our approach involves a non-linear iterative relaxation approach where short and long wavelength components of the velocity model are updated alternatively. The approach still targets at matching observed data with simulated data, except the later are computed through a demigration process using the migrated images as reflectivity model. The overall workflow for the inversion in this paper is similar to the algorithm of migration based travel time waveform inversion proposed by Chavent et al. (1994) (the short wave length components of the velocity models are just replaced by a reflectivity distribution). We derive the inversion equations using Born’s approximation and numerically analyze the Fréchet derivatives of the inversion. As a result we propose an efficient methodology taken advantage of the know how about preserved amplitude migration. At the end, we present a preliminary 2D application to a Gulf of Mexico conventional streamer dataset.

Keywords
imaging
full waveform inversion
reflection
velocity
References
  1. Albertin, U., Sava, P., Etgen, J. and Maharramov, M., 2006. Adjoint wave-equation velocityanalysis. Expanded Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 3345-3349.
  2. Albertin, U., 2011. An improved gradient computation for adjoint wave-equation reflectiontomography. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 3969-3973.
  3. Beylkin, G., 1985. Imaging of discontinuities in the inverse scattering problem by inversion of acausal generalized Radon transform. J. Math. Phys., 26: 99-108.
  4. Billette, F. and Lambaré, G., 1998. Velocity macro-model estimation from seismic reflection databy stereotomography. Geophys. J. Internat., 135: 671-680.
  5. Bishop, T.N., Bube, K.P., Cutler, R.T., Langan, R.T., Love, P.L., Resnick, T.R., Shuey, R.T.,
  6. Spinder, D.A. and Wyld, H.W., 1985. Tomographic determination of velocity and depthin laterally varying media. Geophysics, 50: 903-923.
  7. Bleistein, N., 1987. On the imaging of reflectors in the Earth. Geophysics, 52: 931-942.
  8. Chavent, G., Clément, F. and Gémez, S., 1994. Automatic determination of velocities viamigration-based traveltime waveform inversion: A synthetic data example. Expanded Abstr.,64th Ann. Internat. SEG Mtg., Los Angeles: 1179-1182.
  9. Choi, Y. and Alkhalifah, T., 2011. Application of encoded multi-source waveform inversion tomarine-streamer acquisition based on the global correlation. Extended Abstr., 73rd EAGEConf., Vienna: F026.
  10. Choi, Y., Min, D.J. and Shin, C., 2008. Frequency-domain full waveform inversion using the newpseudo-Hessian matrix: Experience of elastic Marmousi-2 synthetic data. Bull. Seismol. Soc.Am., 98: 2402-2415.
  11. Clément, F., Chavent, G. and Gémez, S., 2001. Migration-based traveltime waveform inversion of2D simple structures: A synthetic example. Geophysics, 66: 845-860.
  12. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismicwaveforms: Numerical results. Geophysics, 51: 1387-1403.
  13. Guillaume, P., Lambaré, G., Sioni, S., Carotti, D., Depr, P., Culianez, G., Montel, J.P.,
  14. Mitouard, P., Depagne, S., Frehers, S. and Vosberg, H., 2011. Geologically consistentvelocities obtained by high definition tomography. Expanded Abstr., 81st Ann. Internat. SEGMtg., San Antonio: 4061-4065.
  15. Han, W., Xu, S., 2011. High resolution velocity model for imaging complex structures. ExtendedAbstr., 73rd EAGE Conf., Vienna: B010.
  16. Hu, L. and Zhou, J., 2011. Velocity update using high resolution tomography in Santos Basin,
  17. Brazil. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 3974-3978.
  18. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. Proc.
  19. Internat. Conf. 'Inverse Scattering, Theory and Applications', Tulsa, OK. SIAM Publishers,Philadelphia.
  20. Lambaré, G., 2008. Stereotomography. Geophysics, 73: VE25-VE34.
  21. Lindsey, J.P., 1960. Elimination of seismic ghost reflections by means of a linear filter. Geophysics,25: 130-140.
  22. Liu, J. and Han, W., 2010. Automatic event picking and tomography on 3D RTM angle gathers.
  23. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 4263-4268.
  24. Liu, Z. and Bleistein, N., 1995. Migration velocity analysis: Theory and an iterative algorithm.Geophysics, 60: 142-153.
  25. Luo, Y. and Schuster, G.T., 1991. Wave-equation traveltime inversion. Geophysics, 56: 645-653.
  26. Ma, Y. and Hale, D., 2011. A projected Hessian matrix for full waveform inversion. Expanded
  27. Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2401-2405.
  28. Operto, S., Xu, S. and Lambaré, G., 2000. Can we quantitatively image complex structures withrays? Geophysics, 65: 1223-1238.
  29. Plessix, R.-E., de Roeck, Y.H. and Chavent, G., 1999. Waveform inversion of reflection seismicdata for kinematic parameters by local optimization. Siam J. on Scient. Comput., 20:1033-1052.462 XU, CHEN, LAMBARE & ZHANG
  30. Plessix, R.-E. and Rynja, H., 2010. VTI full waveform inversion: a parameterization study with anarrow azimuth streamer data example. Expanded Abstr., 80th Ann. Internat. SEG Mtg.,Denver: 962-966.
  31. Plessix, R.-E., Baeten, G., de Maag, J.W., Klaassen, M., Rujie, Z. and Zhifei, T., 2010.
  32. Application of acoustic full waveform inversion to a low-frequency large-offset land data set.
  33. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver: 930-934.
  34. Polyanin, A.D. and Manzhirov, A.V., 1998, Handbook of Integral Equations. CRC Press, BocaRaton, FL.
  35. Pratt, R., Shin, C. and Hicks, G., 1998. Gauss-Newton and full Newton methods in frequency-spaceseismic waveform inversion. Geophys. J. Internat., 13: 341-362.
  36. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  37. Multiscale imaging of complex structures from multifold wide-aperture seismic data byfrequency-domain full waveform tomography: application to a thrust belt. Geophys. J.Internat., 159: 1032-1056.
  38. Sava, P.C., Biondi, B. and Etgen, J., 2005. Wave-equation migration velocity analysis by focusingdiffractions and reflections. Geophysics, 70: U19-U27.
  39. Shen P. and Symes, W.W., 2008. Automatic velocity analysis via shot profile migration.Geophysics, 73: VE49-VE59.
  40. Siliqi, R., Herrmann, P., Prescott, A. and Capar, L., 2007. High-order RMO picking usinguncorrelated parameters. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio:2772-2776.
  41. Sirgue, L., Pratt, R.G., 2004. Efficient waveform inversion and imaging: A strategy for selectingtemporal frequencies. Geophysics, 69: 231-248.
  42. Sirgue, L., Barkved, O.I., Dellinger, J., Etgen, J., Albertin, U. and Kommedal, J.H., 2010.
  43. Full-waveform inversion: the next leap forward in imaging at Valhall. First Break, 28:65-70.
  44. Soubaras, R. and Gratacos, B., 2007. Velocity model building by semblance maximization ofmodulated-shot gathers. Geophysics, 72: U67-U73.
  45. Symes, W.W. and Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization.Geophysics, 56: 654-663.
  46. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,49: 1259-1266.
  47. Virieux, J. and Operto, S., 2009. An overview of full waveform inversion in exploration geophysics.Geophysics, 74(6): WCC127-WCC152.
  48. Woodward, M.J., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A decade oftomography. Geophysics, 73(5): VES-VE11.
  49. Xu, S., Chauris, H., Lambaré, G. and Noble, M., 2001. Common angle migration: a strategy forimaging complex media. Geophysics, 66: 1877-1894.
  50. Xu, S., Zhang, Y. and Tang, B., 2011. 3D angle gathers from reverse time migration. Geophysics,76(2): S77-S92. doi: 10.1190/1.3536527
  51. Zhang, S., Schuster, G. and Luo, Y., 2011. Wave-equation reflection traveltime inversion.
  52. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2705-2710.
  53. Zhang, Y., Xu, S., Bleistein, N. and Zhang, G., 2007. True-amplitude, angle-domain,common-image gathers from one-way wave-equation migrations. Geophysics, 72: S49-S58.
  54. Zhang, Y. and Wang, D., 2009. Traveltime information-based wave-equation inversion. Geophysics,74(6): WCC27-WCC36. i
  55. Zhang, Y., Duan, L. and Roberts, G., 2013. True amplitude reverse time migration: fromreflectivity to velocity and impedance perturbations. Extended Abstr., 75th EAGE Conf.,London.
  56. Zhou, H., Gray, S.H., Young, J., Pham, D. and Zhang, Y., 2003. Tomographic residual curvatureanalysis: The process and its components. Expanded Abstr., 73rd Ann. Internat. SEG Mtg.,Dallas: 666-669.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing