Cite this article
1
Download
41
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Nearly perfectly matched layer boundary condition for second-order anisotropic acoustic wave equations

CAN OZSOY* JINGYI CHEN1 QUNSHAN ZHANG2 JIANGUO ZHAO3 GULSAH METIN1,*
Show Less
1 Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A.,
2 Repsol Service Company, The Woodlands, Texas 77380, U.S.A.,
3 College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, P.R. China.,
JSE 2013, 22(5), 489–500;
Submitted: 22 June 2013 | Accepted: 21 September 2013 | Published: 1 November 2013
© 2013 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ozsoy, C., Chen, J., Zhang, Q., Zhao, J. and Metin, G., 2013. Nearly perfectly matched layer boundary condition for second-order anisotropic acoustic wave equations. Journal of Seismic Exploration, 22: 489-500. During the numerical simulation of seismic wave propagation, the artificial layers are used at the computational boundaries to truncate the unbounded media which cause the unwanted reflections. In this study, the validity of the nearly perfectly matched layer as an absorbing layer, which has proven to be very efficient for first-order acoustic and elastic wave equations in stress and velocity, is detailed investigated to suppress those spurious reflections for second-order anisotropic acoustic wave equations. The numerical test results show that the nearly perfectly matched layer has a significant performance to absorb the outgoing waves at the model edges.

Keywords
nearly perfectly matched layer
second-order
anisotropic
acoustic equations
numerical modeling
References
  1. Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media. Geophysics, 65: 1239-1250.
  2. Bérenger, J., 1994. A perfectly matched layer for the absorption of electromagnetic waves. J.Computat. Phys., 114: 185-200.
  3. Chen, J. and Zhao, J., 2011. Application of the nearly perfectly matched layer to seismic-wavepropagation modeling in elastic anisotropic media. Bull. Seismol. Soc. Am., 101: 2866-2871.
  4. Chen, J., 2012. Nearly perfectly matched layer method for seismic wave propagation in poroelasticmedia. Can. J. Explor. Geophys., 37: 24-29.
  5. Collino, F. and Tsogka, C., 2001. Application of the PML absorbing layer model to the linearelastodynamic problem in anisotropic heterogeneous media. Geophysics, 66: 294-307.
  6. Courant, R., Friedrichs, K.O. and Lewy, H., 1928. Ueber die partiellen differenzengleichungen dermathematischen physik. Mathemat. Annalen, 100: 32-74.
  7. Cummer, S.A., 2003. A simple, nearly perfectly matched layer for general electromagnetic media.IEEE Microwave Wirel. Compon. Lett., 13: 137-140.
  8. Du, X., Fletcher, R.P. and Fowler, P.J., 2008. A new pseudo-acoustic wave equation for VTImedia. Extended Abstr., 70th EAGE Conf., Rome: H033.
  9. Helbig, K., 1983. Elliptical anisotropy - Its significance and meaning. Geophysics, 48: 825-832.
  10. Hastings, F.D., Schneider, J.B. and Broschat, S.L., 1996. Application of the perfectly matchedlayer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am.,100: 3061-3069.
  11. Hu, W., Abubakar, A. and Habashy, T., 2007. Application of the nearly perfectly matched layerin acoustic wave modeling. Geophysics, 72: 169-175.
  12. Kelly, K.R., Ward, R.W., Treitel, S. and Alford, R.M., 1976. Synthetic seismograms: Afinite-difference approach. Geophysics, 41: 2-27.
  13. Komatitsch, D. and Tromp, J., 2003. A Perfectly Matched Layer (PML) absorbing condition forthe second-order elastic wave equation. Geophys. J. Internat., 154: 146-153.
  14. McGarry, R. and Moghaddom, P., 2009. NPML boundary conditions for second-order waveequations. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3590-3594.
  15. Metin, G., Chen, J. and Ozsoy, C., 2013. Application of nearly perfectly matched layer withsecond-order acoustic equations in seismic numerical modeling. J. Geol. Geosci., 2: 120.doi: 10.4172/2329-6755. 1000120. :
  16. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  17. Tsvankin, I., Gaiser, J., Grechka, V., van der Baan, M. and Thomsen, L., 2010. Seismicanisotropy in exploration and reservoir characterization: An overview. Geophysics, 75: A15-A29.
  18. Zeng, Y., He, J. and Liu, Q., 2001. The application of the perfectly matched layer in numericalmodeling of wave propagation in poroelastic media. Geophysics, 66: 1258-1266.
  19. Zhou, H., Zhang, G. and Bloor, R., 2006. An anisotropic acoustic wave equation for VTI media.Extended Abstr., 68th EAGE Conf., Vienna: H033.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing