ARTICLE

Wavelet frame based seismic attributes extraction using a filtering scheme

PING WANG1,2 JINGHUA! GAO1,2
JSE 2013, 22(4), 353–372;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, P. and Gao, J., 2013. Wavelet frame based seismic attributes extraction using a filtering scheme. Journal of Seismic Exploration, 22: 353-372. Extraction of instantaneous attributes is important for seismic data processing and interpretation. However, the instantaneous attributes extracted by the conventional Hilbert transform method are sensitive to noise that inevitably lies in field seismic data. We propose a robust approach to extract instantaneous attributes in wavelet domain. In the proposed approach, we apply a superfamily of analytic wavelets with some desirable properties-the generalized Morse wavelets-in the proposed approach. Based on the proposed discretization, the wavelet family can constitute a tight frame. For signal in noise, we implement a filtering scheme to determine the distribution of the effective signal in the transformed domain before calculating the instantaneous attributes. In this filtering scheme, a percentage thresholding strategy is manipulated. Compared with the conventional method based on Hilbert transform, the synthetic trace and real data examples show higher precision and anti-noise performance of the proposed approach, even for signals contaminated by strong noise.

Keywords
instantaneous attributes
anti-noise
Hilbert transform
tight frame
generalized Morse wavelet
filtering scheme
soft-thresholding
References
  1. Antoine, J.P., Murenzi, R., Vandergheynst, P. and Ali, S.T., 2004. Two-dimensional Wavelets and
  2. Their Relatives. Cambridge University Press, Cambridge.
  3. Barnes, A.E., 1992. Short Note The calculation of instantaneous frequency and instantaneous
  4. bandwidth. Geophysics, 57: 1520-1524.
  5. Barnes, A.E., 1996, Theory of 2-D complex seismic trace analysis. Geophysics, 61: 264-272.
  6. Boashash, B., 1992. Estimating and interpreting the instantaneous frequency of a signal. I.
  7. Fundamentals. Proc. IEEE, 80: 520-538.
  8. Chopra, S. and Marfurt, K.J., 2005. Seismic attributes - A historical perspective. Geophysics, 70
  9. (5): 3SO-28SO.
  10. Duffin, R.J. and Schaeffer, A.C., 1952. A class of nonharmonic Fourier series. Transact. Am.
  11. Mathemat. Soc., 72: 341-366.
  12. Fomel, S., 2007. Local seismic attributes. Geophysics, 72 (3): A29.
  13. Fomel, S., 2012. Seismic data decomposition into spectral components using regularized
  14. nonstationary autoregression. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., La Vegas.
  15. Gabor, D., 1946. Theory of communication. Part 1: The analysis of information. J. Instit. Electr.
  16. Engin., 93 (26): 429-441.
  17. Gao, J., Dong, X., Wang, W.B., Li, Y. and Pan, C., 1999. Instantaneous parameters extraction
  18. via wavelet transform. IEEE Transact. Geosci. Remote Sens., 37: 867-870.
  19. Gao, J., Yang, S., Wang, D. and Wu, R., 2011. Estimation of quality factor Q from the
  20. instantaneous frequency at the envelope peak of a seismic signal. J. Computat. Acoust., 19:
  21. 155-179.
  22. Han, J. and van der Baan, M., 2011. Empirical mode decomposition and robust seismic attribute
  23. analysis. Recovery-2011 CSPG CSEG CWLS Convention, Calgary.
  24. Hardage, B.A., 2010. Hilbert transform remains a valuable tool.
  25. http://www.aapg.org/explorer/2010/06jun/geocorner0610.cfm.
  26. Hardy, H., Beier, R.A. and Gaston, J.D., 2003. Frequency estimates of seismic traces. Geophysics,
  27. 68: 370-380.
  28. Holschneider, M. and Kon, M.A., 1996. Wavelets: An Analysis Tool. Oxford University Press,
  29. Oxford.
  30. Huang, J.W. and Milkereit, B., 2009. Empirical mode decomposition based instantaneous spectral
  31. analysis and its applications to heterogeneous petrophysical model construction. Proc. 2009
  32. CSPG CSEG CWLS Conv., Calgary: 205-210.
  33. Lilly, J.M. and Olhede, S.C., 2009. Higher-order properties of analytic wavelets. IEEE Transact.
  34. Sign. Process., 57: 146-160.
  35. Lilly, J.M. and Olhede, S.C., 2010. On the analytic wavelet transform. IEEE Transact. Informat.
  36. Theory, 56: 4135-4156.
  37. Lilly, J.M. and Olhede, S.C., 2012. Generalized Morse wavelets as a superfamily of analytic
  38. wavelets. IEEE Transact. Sign. Process., 60: 6036-6041.
  39. Mallat, S.G., 2009. A wavelet tour of signal processing: the sparse way. Academic Press Inc., New
  40. York.
  41. Matheney, M.P. and Nowack, R.L., 1995. Seismic attenuation values obtained from
  42. instantaneous-frequency matching and spectral ratios. Geophys. J. Internat., 123: 1-15.
  43. SEISMIC ATTRIBUTES EXTRACTION 371
  44. Meyers, S.D., Kelly, B.G. and O’Brien, J.J., 1993. An introduction to wavelet analysis in
  45. oceanography and meteorology: With application to the dispersion of Yanai waves. Monthly
  46. Weather Rev., 121: 2858-2866.
  47. Olhede, S.C. and Walden, A.T., 2002. Generalized morse wavelets. IEEE Transact. Sign. Process.,
  48. 50: 2661-2670.
  49. Olhede, S.C. and Walden, A.T., 2003. Polarization phase relationships via multiple Morse wavelets.
  50. I, Fundamentals. Proc. Roy. Soc. London, Series A: Mathemat., Phys. Engin. Sci., 459 (A):
  51. 413-444,
  52. Picinbono, B., 1997. On instantaneous amplitude and phase of signals. IEEE Transact. Sign.
  53. Process., 45: 552-560.
  54. Steeghs, P. and Guy, D., 2001. Seismic sequence analysis and attribute extraction using quadratic
  55. time-frequency representations. Geophysics, 66: 1947-1959.
  56. Taner, M.T., 2001. Seismic Attributes. CSEG Recorder, 26 (7): 48-56.
  57. Taner, M.T., Koehler, F. and Sheriff, R., 1979. Complex seismic trace analysis. Geophysics, 44:
  58. 1041-1063.
  59. Vakman, D., 1996. On the analytic signal, the Teager-Kaiser energy algorithm, and other methods
  60. for defining amplitude and frequency. IEEE Transact. Sign. Process., 44: 791-797.
  61. Ville, J., 1948. Theorie et applications de la notion de signal analytique. Cables Transmiss., 2:
  62. 61-74.
  63. Wang, P. and Gao, J., 2013. Extraction of instantaneous frequency from seismic data via the
  64. generalized Morse wavelets. J. Appl. Geophys., 93: 83-92.
  65. Wang, X., Gao, J. and Chen, W., 2012. A new tiling scheme for 2-D continuous wavelet transform
  66. with different rotation parameters at different scales resulting in a tighter frame. IEEE Sign.
  67. Process. Lett., 19: 407-410.
  68. Yang, S. and Gao, J., 2010. Seismic attenuation estimation from instantaneous frequency. IEEE
  69. Geosc. Remote Sens. Lett., 7: 113-117.
  70. Zhang, R. and Ulrych, T.J., 2003. Physical wavelet frame denoising. Geophysics, 68: 225-231.
  71. Zhou, Y., Chen, W., Gao, J. and He, Y., 2012. Application of Hilbert-Huang transform based
  72. instantaneous frequency to seismic reflection data. J. Appl. Geophys., 82: 68-74.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing