Wavelet frame based seismic attributes extraction using a filtering scheme

Wang, P. and Gao, J., 2013. Wavelet frame based seismic attributes extraction using a filtering scheme. Journal of Seismic Exploration, 22: 353-372. Extraction of instantaneous attributes is important for seismic data processing and interpretation. However, the instantaneous attributes extracted by the conventional Hilbert transform method are sensitive to noise that inevitably lies in field seismic data. We propose a robust approach to extract instantaneous attributes in wavelet domain. In the proposed approach, we apply a superfamily of analytic wavelets with some desirable properties-the generalized Morse wavelets-in the proposed approach. Based on the proposed discretization, the wavelet family can constitute a tight frame. For signal in noise, we implement a filtering scheme to determine the distribution of the effective signal in the transformed domain before calculating the instantaneous attributes. In this filtering scheme, a percentage thresholding strategy is manipulated. Compared with the conventional method based on Hilbert transform, the synthetic trace and real data examples show higher precision and anti-noise performance of the proposed approach, even for signals contaminated by strong noise.
- Antoine, J.P., Murenzi, R., Vandergheynst, P. and Ali, S.T., 2004. Two-dimensional Wavelets and
- Their Relatives. Cambridge University Press, Cambridge.
- Barnes, A.E., 1992. Short Note The calculation of instantaneous frequency and instantaneous
- bandwidth. Geophysics, 57: 1520-1524.
- Barnes, A.E., 1996, Theory of 2-D complex seismic trace analysis. Geophysics, 61: 264-272.
- Boashash, B., 1992. Estimating and interpreting the instantaneous frequency of a signal. I.
- Fundamentals. Proc. IEEE, 80: 520-538.
- Chopra, S. and Marfurt, K.J., 2005. Seismic attributes - A historical perspective. Geophysics, 70
- (5): 3SO-28SO.
- Duffin, R.J. and Schaeffer, A.C., 1952. A class of nonharmonic Fourier series. Transact. Am.
- Mathemat. Soc., 72: 341-366.
- Fomel, S., 2007. Local seismic attributes. Geophysics, 72 (3): A29.
- Fomel, S., 2012. Seismic data decomposition into spectral components using regularized
- nonstationary autoregression. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., La Vegas.
- Gabor, D., 1946. Theory of communication. Part 1: The analysis of information. J. Instit. Electr.
- Engin., 93 (26): 429-441.
- Gao, J., Dong, X., Wang, W.B., Li, Y. and Pan, C., 1999. Instantaneous parameters extraction
- via wavelet transform. IEEE Transact. Geosci. Remote Sens., 37: 867-870.
- Gao, J., Yang, S., Wang, D. and Wu, R., 2011. Estimation of quality factor Q from the
- instantaneous frequency at the envelope peak of a seismic signal. J. Computat. Acoust., 19:
- 155-179.
- Han, J. and van der Baan, M., 2011. Empirical mode decomposition and robust seismic attribute
- analysis. Recovery-2011 CSPG CSEG CWLS Convention, Calgary.
- Hardage, B.A., 2010. Hilbert transform remains a valuable tool.
- http://www.aapg.org/explorer/2010/06jun/geocorner0610.cfm.
- Hardy, H., Beier, R.A. and Gaston, J.D., 2003. Frequency estimates of seismic traces. Geophysics,
- 68: 370-380.
- Holschneider, M. and Kon, M.A., 1996. Wavelets: An Analysis Tool. Oxford University Press,
- Oxford.
- Huang, J.W. and Milkereit, B., 2009. Empirical mode decomposition based instantaneous spectral
- analysis and its applications to heterogeneous petrophysical model construction. Proc. 2009
- CSPG CSEG CWLS Conv., Calgary: 205-210.
- Lilly, J.M. and Olhede, S.C., 2009. Higher-order properties of analytic wavelets. IEEE Transact.
- Sign. Process., 57: 146-160.
- Lilly, J.M. and Olhede, S.C., 2010. On the analytic wavelet transform. IEEE Transact. Informat.
- Theory, 56: 4135-4156.
- Lilly, J.M. and Olhede, S.C., 2012. Generalized Morse wavelets as a superfamily of analytic
- wavelets. IEEE Transact. Sign. Process., 60: 6036-6041.
- Mallat, S.G., 2009. A wavelet tour of signal processing: the sparse way. Academic Press Inc., New
- York.
- Matheney, M.P. and Nowack, R.L., 1995. Seismic attenuation values obtained from
- instantaneous-frequency matching and spectral ratios. Geophys. J. Internat., 123: 1-15.
- SEISMIC ATTRIBUTES EXTRACTION 371
- Meyers, S.D., Kelly, B.G. and O’Brien, J.J., 1993. An introduction to wavelet analysis in
- oceanography and meteorology: With application to the dispersion of Yanai waves. Monthly
- Weather Rev., 121: 2858-2866.
- Olhede, S.C. and Walden, A.T., 2002. Generalized morse wavelets. IEEE Transact. Sign. Process.,
- 50: 2661-2670.
- Olhede, S.C. and Walden, A.T., 2003. Polarization phase relationships via multiple Morse wavelets.
- I, Fundamentals. Proc. Roy. Soc. London, Series A: Mathemat., Phys. Engin. Sci., 459 (A):
- 413-444,
- Picinbono, B., 1997. On instantaneous amplitude and phase of signals. IEEE Transact. Sign.
- Process., 45: 552-560.
- Steeghs, P. and Guy, D., 2001. Seismic sequence analysis and attribute extraction using quadratic
- time-frequency representations. Geophysics, 66: 1947-1959.
- Taner, M.T., 2001. Seismic Attributes. CSEG Recorder, 26 (7): 48-56.
- Taner, M.T., Koehler, F. and Sheriff, R., 1979. Complex seismic trace analysis. Geophysics, 44:
- 1041-1063.
- Vakman, D., 1996. On the analytic signal, the Teager-Kaiser energy algorithm, and other methods
- for defining amplitude and frequency. IEEE Transact. Sign. Process., 44: 791-797.
- Ville, J., 1948. Theorie et applications de la notion de signal analytique. Cables Transmiss., 2:
- 61-74.
- Wang, P. and Gao, J., 2013. Extraction of instantaneous frequency from seismic data via the
- generalized Morse wavelets. J. Appl. Geophys., 93: 83-92.
- Wang, X., Gao, J. and Chen, W., 2012. A new tiling scheme for 2-D continuous wavelet transform
- with different rotation parameters at different scales resulting in a tighter frame. IEEE Sign.
- Process. Lett., 19: 407-410.
- Yang, S. and Gao, J., 2010. Seismic attenuation estimation from instantaneous frequency. IEEE
- Geosc. Remote Sens. Lett., 7: 113-117.
- Zhang, R. and Ulrych, T.J., 2003. Physical wavelet frame denoising. Geophysics, 68: 225-231.
- Zhou, Y., Chen, W., Gao, J. and He, Y., 2012. Application of Hilbert-Huang transform based
- instantaneous frequency to seismic reflection data. J. Appl. Geophys., 82: 68-74.