ARTICLE

Scattered energy inversion of seismic data

JEWOO YOO1 WANSOO HA2 CHANGSOO SHIN2 DONG-JOO MIN2
Show Less
1 Department of Computational Science & Technology, Seoul National University, Seoul, South Korea.,
2 Department of Energy Systems Engineering, Seoul National University, Seoul, South Korea.,
JSE 2013, 22(2), 183–208;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yoo, J., Ha, W., Shin, C. and Min, D.-J., 2013. Scattered energy inversion of seismic data. Journal of Seismic Exploration, 22: 183-208. We propose a new algorithm to build a macro-velocity model using scattered energy from a seismic signal. This method does not require an iterative procedure or an estimation of the source wavelet. Consequently, it is an inexpensive and efficient method to delineate a macro-velocity model. We acquire information concerning the velocity differences similar to a gravity or magnetic field and build a macro-velocity model. Thus, subsequent inversion in the time or frequency domains can recover structures with sharp velocity variations from the constructed velocity model as an initial velocity model.

Keywords
scattering energy
velocity anomaly
Born theory
gravity inversion
References
  1. Billette, F.J. and Brandsberg-Dhal, S., 2005. The 2004 BP Velocity Benchmark. Extended Abstr.,
  2. 67th EAGE Conf., Madrid: B035.
  3. Chapman, C.H. and Pratt, R.G., 1992. Traveltime tomography in anisotropic media - I. Theory.
  4. Geophys. J. Internat., 109: 1-19.
  5. Geldart, L.P. and Sheriff, R.E., 2004. Problems in Exploration Seismology and their Solutions.
  6. SEG, Tulsa, OK. ISBN 1560801158.
  7. Guspi, F., 1993. Noniterative nonlinear gravity inversion. Geophysics, 58: 935-940.
  8. Ikelle, L.T. and Amundsen, L., 2005. Introduction to Petroleum Seismology. SEG, Tulsa, OK.
  9. ISBN 1560801298.
  10. Kuvshinov, B.N. and Mulder, W.A., 2006. The exact solution of the time-harmonic wave equation
  11. for a linear velocity profile. Geophys. J. Internat., 167: 659-662.
  12. Last, B.J. and Kubik, K., 1983. Compact gravity inversion. Geophysics, 48: 713-721.
  13. Luo, Y. and Schuster, G.T. 1991. Wave-equation traveltime inversion. Geophysics 56, 645-653.
  14. Mitra, S.K. 2005. Digital signal processing: A computer-based approach. McGraw-Hill College.
  15. ISBN 0073048372
  16. Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat.,
  17. 173: 922-931.
  18. Shin, C. and Ha, W., 2008. A comparison between the behavior of objective functions for waveform
  19. inversion in the frequency and Laplace domains. Geophysics, 73: VE119-VE133.
  20. Stoughton, D., Stefani, J. and Michell, S., 2001. 2D elastic model for wavefield investigations of
  21. subsalt objectives, deep water Gulf of Mexico. Expanded Abstr., 71st Ann. Internat. SEG
  22. Mtg., San Antonio: 1269-1272.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing