ARTICLE

High-resolution reflectivity inversion

THANG NGUYEN JOHN CASTAGNA
Show Less
Department of Earth and Atmospheric Sciences, The University of Houston, 4800 Cathoun Rd., Houston, TX 77204, U.S.A.,
JSE 2010, 19(4), 303–320;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Assuming the convolutional model and a known wavelet, reflectivity inversion is an ill-posed problem. Existing methods mostly regularize the problem using mathematical criterion, such as minimization of the reflectivity vector norm. We propose reflectivity inversion using atomic decomposition, in which the atoms can be basic geological structures or derived from well logs. This is equivalent to replacing mathematical criterion by geological ones. Numerical results show that atomic decomposition is robust to noise. When applied to multi-dimensional data in a trace by trace basis, atomic decomposition shows lateral instability. The solutions are non-unique. Atomic decomposition results are probable solutions, which can be laterally regularized by re-projection.

Keywords
reflectivity
inversion
matching pursuit
regularization
geological pattern
sparse spike inversion
basis pursuit
References
  1. Candes, E.J., Demanet, L., Donoho, D.L. and Ying, L., 2006. Fast discrete curvelet transforms.
  2. SIAM Mult. Model. Sim., 5: 861-899.
  3. Chen, S., Donoho, D. and Saunders, M., 2001. Atomic decomposition by basis pursuit. SIAM J.
  4. Scientif. Comput., 43: 129-159.
  5. 320 NGUYEN & CASTAGNA
  6. Chopra, S., Castagna, J., Xu, Y. and Tonn, R., 2007. Thin-bed reflectivity inversion and seismic
  7. interpretation. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio, 26: 1923-
  8. Chopra, S., Castagna, J.P. and Portniaguine, O., 2006. Seismic resolution and thin-bed reflectivity
  9. inversion. CSEG Recorder, 31: 19-25.
  10. Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linear
  11. inverse problems with a sparsity constraint. Communic. Pure Appl. Mathem., 57: 1413-
  12. Debeye, H.W.J. and Riel, P.V., 1990. /,-norm deconvolution. Geophys. Prosp., 38: 381-403.
  13. Donoho, D., 2004. For most large underdetermined systems of linear equations, the mimimal /,-
  14. norm solution approximates the sparsest near-solution. Communic. Pure Appl. Mathem., 59:
  15. 797-829.
  16. Dossal, C. and Mallat, S., 2005. Sparse spike deconvolution with minimum scale. Signal Proc.
  17. Adapt. Sparse Struct. Respresent. : 123-126.
  18. Herrmann, F., 2005. Seismic deconvolution by atomic decomposition: a parametric approach with
  19. sparseness constraints. Integr. Computer-Aided Engin., 12: 69.
  20. Kim, S.-J., Koh, K. Lustig, M., Boyd, S. and Gorinevsky, D., 2007. An interior-point method for
  21. large-scale /,-regularized least squares. IEEE J. Selected Topics Signal Proc., 1: 606-617.
  22. Levy, S. and Fullagar, P.K., 1981. Reconstruction of a sparse spike train from a portion of its
  23. spectrum and application to high-resolution deconvolution. Geophysics, 46: 1235-1243.
  24. Mallat, S., 1998. A Wavelet Tour of Signal Processing. Academic Press, New York.
  25. Mallat, S. and Zhang, Z., 1993. Matching pursuit with time-frequency dictionary. IEEE Trans.
  26. Sign. Proc., 41: 3397-3415.
  27. Nguyen, T., 2008. High-resolution Reflectivity Inversion. Ph.D. thesis, University of Houston.
  28. Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance from
  29. reflection seismograms. Geophysics, 48: 1318-1337.
  30. Papandreou-Suppappola, A. and Suppappola, S.B., 2002. Analysis and classification of time-varying
  31. signals with multiple time-frequency structures. IEEE Sign. Proc. Lett., 9: 92-95.
  32. Partyka, G.A., 2001. Seismic thickness estimation: Three approaches, pros and cons. Expanded
  33. Abstr, 71st Ann. Internat. SEG Mtg., San Antonio, 20: 503-506.
  34. Partyka, G.A., 2005. Spectral Decomposition. SEG Distinguished Lecture.
  35. Partyka, G.A., Gridley, J.A. and Lopez, J.A., 1999. Interpretational aspects of spectral
  36. decomposition in reservoir characterization. The Leading Edge, 18: 353-360.
  37. Portniaguine, O. and Castagna, J.P., 2004. Inverse spectral decomposition. Expanded Abstr., 74th
  38. Ann, Internat. SEG Mtg., Denver: 1786-1789.
  39. Portniaguine, O. and Castagna, J.P., 2005, Spectral inversion: Lessons from modeling and
  40. boonesville case study. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1638-
  41. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., 1992. Numerical Recipes in
  42. C, 2nd Ed.. Cambridge University Press, Cambridge.
  43. Puryear, C.I., 2006. Modeling and Application of Spectral Inversion. M.Sc. thesis, University of
  44. Houston.
  45. Robinson, E.A., 1957. Predictive decomposition of seismic traces. Geophysics, 22: 767-778.
  46. Santosa, F. and Symes, W.W., 1986, Linear inversion of band-limited reflection seismograms.
  47. SIAM J. Scientif. Statist. Comput., 7: 1307-1330.
  48. Taylor, H., Banks, $. and McCoy, J., 1979. Deconvolution with the /,-norm. Geophysics, 44: 39-
  49. Treitel, S. and Robinson, E.A., 1977. Deconvolution-homomorphic or predictive. IEEE Transact.
  50. Geosc. Electron., 15: 11-13.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing