High-resolution reflectivity inversion

Assuming the convolutional model and a known wavelet, reflectivity inversion is an ill-posed problem. Existing methods mostly regularize the problem using mathematical criterion, such as minimization of the reflectivity vector norm. We propose reflectivity inversion using atomic decomposition, in which the atoms can be basic geological structures or derived from well logs. This is equivalent to replacing mathematical criterion by geological ones. Numerical results show that atomic decomposition is robust to noise. When applied to multi-dimensional data in a trace by trace basis, atomic decomposition shows lateral instability. The solutions are non-unique. Atomic decomposition results are probable solutions, which can be laterally regularized by re-projection.
- Candes, E.J., Demanet, L., Donoho, D.L. and Ying, L., 2006. Fast discrete curvelet transforms.SIAM Mult. Model. Sim., 5: 861-899.
- Chen, S., Donoho, D. and Saunders, M., 2001. Atomic decomposition by basis pursuit. SIAM J.Scientif. Comput., 43: 129-159.320 NGUYEN & CASTAGNA
- Chopra, S., Castagna, J., Xu, Y. and Tonn, R., 2007. Thin-bed reflectivity inversion and seismicinterpretation. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio, 26: 1923-
- Chopra, S., Castagna, J.P. and Portniaguine, O., 2006. Seismic resolution and thin-bed reflectivityinversion. CSEG Recorder, 31: 19-25.
- Daubechies, I., Defrise, M. and Mol, C.D., 2004. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint. Communic. Pure Appl. Mathem., 57: 1413-
- Debeye, H.W.J. and Riel, P.V., 1990. /,-norm deconvolution. Geophys. Prosp., 38: 381-403.
- Donoho, D., 2004. For most large underdetermined systems of linear equations, the mimimal /,-norm solution approximates the sparsest near-solution. Communic. Pure Appl. Mathem., 59:797-829.
- Dossal, C. and Mallat, S., 2005. Sparse spike deconvolution with minimum scale. Signal Proc.Adapt. Sparse Struct. Respresent. : 123-126.
- Herrmann, F., 2005. Seismic deconvolution by atomic decomposition: a parametric approach withsparseness constraints. Integr. Computer-Aided Engin., 12: 69.
- Kim, S.-J., Koh, K. Lustig, M., Boyd, S. and Gorinevsky, D., 2007. An interior-point method forlarge-scale /,-regularized least squares. IEEE J. Selected Topics Signal Proc., 1: 606-617.
- Levy, S. and Fullagar, P.K., 1981. Reconstruction of a sparse spike train from a portion of itsspectrum and application to high-resolution deconvolution. Geophysics, 46: 1235-1243.
- Mallat, S., 1998. A Wavelet Tour of Signal Processing. Academic Press, New York.
- Mallat, S. and Zhang, Z., 1993. Matching pursuit with time-frequency dictionary. IEEE Trans.Sign. Proc., 41: 3397-3415.
- Nguyen, T., 2008. High-resolution Reflectivity Inversion. Ph.D. thesis, University of Houston.
- Oldenburg, D.W., Scheuer, T. and Levy, S., 1983. Recovery of the acoustic impedance fromreflection seismograms. Geophysics, 48: 1318-1337.
- Papandreou-Suppappola, A. and Suppappola, S.B., 2002. Analysis and classification of time-varyingsignals with multiple time-frequency structures. IEEE Sign. Proc. Lett., 9: 92-95.
- Partyka, G.A., 2001. Seismic thickness estimation: Three approaches, pros and cons. Expanded
- Abstr, 71st Ann. Internat. SEG Mtg., San Antonio, 20: 503-506.
- Partyka, G.A., 2005. Spectral Decomposition. SEG Distinguished Lecture.
- Partyka, G.A., Gridley, J.A. and Lopez, J.A., 1999. Interpretational aspects of spectraldecomposition in reservoir characterization. The Leading Edge, 18: 353-360.
- Portniaguine, O. and Castagna, J.P., 2004. Inverse spectral decomposition. Expanded Abstr., 74thAnn, Internat. SEG Mtg., Denver: 1786-1789.
- Portniaguine, O. and Castagna, J.P., 2005, Spectral inversion: Lessons from modeling andboonesville case study. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 1638-
- Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., 1992. Numerical Recipes in
- C, 2nd Ed.. Cambridge University Press, Cambridge.
- Puryear, C.I., 2006. Modeling and Application of Spectral Inversion. M.Sc. thesis, University ofHouston.
- Robinson, E.A., 1957. Predictive decomposition of seismic traces. Geophysics, 22: 767-778.
- Santosa, F. and Symes, W.W., 1986, Linear inversion of band-limited reflection seismograms.SIAM J. Scientif. Statist. Comput., 7: 1307-1330.
- Taylor, H., Banks, $. and McCoy, J., 1979. Deconvolution with the /,-norm. Geophysics, 44: 39-
- Treitel, S. and Robinson, E.A., 1977. Deconvolution-homomorphic or predictive. IEEE Transact.Geosc. Electron., 15: 11-13.