Cite this article
2
Download
46
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Faults/fractures characterization to improve well planning and reduce drilling risks – A case study from a tight carbonate reservoir in Pakistan

MARYAM TALIB MUHAMMAD ZAHID AFZAL DURRANI GHULAM SUBHANI BAKHTAWER SAROSH SYED ATIF RAHMAN
Show Less
Pakistan Petroleum Limited (PPL), 3rd floor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan,
JSE 2023, 32(1), 21–38;
Submitted: 8 February 2022 | Accepted: 20 December 2022 | Published: 1 February 2023
© 2023 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Talib, M., Durrani, M.Z.A., Subhani, G., Sarosh, B. and Rahman, S.A., 2023. Faults/fractures characterization to improve well planning and reduce drilling risks - A case study from a tight carbonate reservoir in Pakistan. Journal of Seismic Exploration, 32: 21-38. Fracture characterization in tight carbonate reservoirs in terms of fracture’s relative geometries, orientation, density, and the probability of occurrence has become very important in the exploration and development phase. The future field development plans and production operations in carbonate reservoirs entirely depend on accurate characterization and prediction of the faults and fractures information. In this paper, we synergistically integrated post-stack 3D seismic data, geological background, and drilling history to successfully develop a faults/fractures model of the tight carbonate field in terms of their intensity and direction/orientation information. The workflow involved the removal of the coherent and random noise from the seismic data, calculation of dip compensated edge detection attribute, and improvement in fault/fractures imaging with an advanced automated fault extraction (AFE) algorithm. Finally, discontinuity attributes are used to automatically extract faults/fractures planes information. Markers interpreted from the borehole formation micro-imaging (FMI) helped to calibrate the faults/fractures presence. The studied reservoir consists of Eocene and Paleocene fractured tight carbonate reservoirs in Potwar Basin, onshore Pakistan. The post-stack faults/fractures characterization results proved to be consistent with the geology of the area and validated with the wells data, and the 3D model helped to accurately predict the “sweet spot” within the reservoirs for future drilling of exploration or appraisal wells and improve drilling success.

Keywords
carbonate reservoir
fracture characterization
faults/fracture imaging
edge detection attribute
micro-imaging logs
References
  1. AIBinHassan, N.M. and Marfurt, K.J., 2003. Fault detection using Hough transforms.
  2. Expanded Abstr., 73rd Ann. Internat. SEG Mtg., Dallas: 1719-1721.
  3. Al-Dossary, S. and Marfurt, K.J., 2006. 3D volumetric multispectral estimates ofreflector curvature and rotation. Geophysics, 71: 41-51.
  4. Bahorich,M. and Farmer, S., 1995. 3-D seismic discontinuity for faults andstratigraphic features: The coherence cube. The Leading Edge, 14: 1053-1058.
  5. Basir, H.M., Javaherian, A. and Yaraki, M.T., 2013. Multi-attribute ant-tracking andneural network for fault detection: a case study of an Iranian oilfield. J.Geophys. Engineer., 10: 015009.
  6. Bear, J., Tsang, C.F. and De Marsily, G. 2012. Flow and Contaminant Transport inFractured Rock. Academic Press, New York.
  7. Berkowitz, B., 2002. Characterizing flow and transport in fractured geological media: Areview. Advanc. Water Resour., 25(8-12): 861-884.
  8. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and Berkowitz, B.,
  9. Scaling of fracture systems in geological media. Rev. Geophys., 39: 347-
  10. Boro, H., Rosero, E. and Bertotti, G., 2014. Fracture-network analysis of the Latemar
  11. Platform (northern Italy): Integrating outcrop studies to constrain the hydraulicproperties of fractures in reservoir models. Petrol. Geosci., 20: 79-92.
  12. Burbank, D.W. and Raynolds, R.G.H., 1988. Stratigraphic keys to the timing ofthrusting in terrestrial foreland basins; Applications to the north-western
  13. Himalaya. In: Kleinspehn, K.L. and Paola, C., Eds., New perspectives in basinanalysis. Springer-Verlag, New York: 331-351.
  14. Chopra, S. and Marfurt, K.J., 2007. Volumetric curvature attributes add value to 3Dseismic data interpretation. The Leading Edge, 26: 856-867.
  15. Crawford, M. and Medwedeff, D.A., 1999. Automated extraction of fault surfaces from3-D seismic prospecting data. U. S. Patent 5,987,388.
  16. Deng, X.L., Li, J.H., Liu, L. and Ren, K.X., 2015. Advances in the study of fracturedreservoir characterization and modelling. Geol. J. China Univ., 21: 306-319.
  17. Ding, Y., Du, Q., Yasin, Q., Zhang, Q. and Liu, L., 2020. Fracture prediction based ondeep learning: Application to a buried hill carbonate reservoir in the S area.Geophys. Prosp. Petrol., 59: 267-275.
  18. De Dreuzy, J.R., Méheust, Y. and Pichot, G., 2012. Influence of fracture scaleheterogeneity on the flow properties of three-dimensional discrete fracturenetworks (DFN). J. Geophys. Res., Solid Earth, 117: B11207.
  19. Dom, G.A. and James, H.E., 2005. Automatic fault extraction in 3-D seismicinterpretation. Extended Abstr., 67th EAGE Conf., Madrid: F035.
  20. Dorn, G.A., Kadlec, B. and Murtha, P., 2012. Imaging faults in 3D seismic volumes.
  21. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
  22. Dorn, G.A., 2019, 3D fault imaging using windowed Radon transforms: an examplefrom the North Sea. First Break, 37(5): 81-88.
  23. Duan, R., Xu, Z., Dong, Y. and Liu, W., 2021. Characterization and classification ofpore structures in deeply buried carbonate rocks based on mono- andmultifractal methods. J. Petrol. Sci. Engineer., 203: 108606.
  24. Espejel, R.L., Alves, T.M. and Blenkinsop, T.G., 2020. Multi-scale fracture networkcharacterisation on carbonate platforms. J. Struct. Geol., 140: 104160.
  25. George, B.K., Clara, C., Al Mazrooei, S., Manseur, S., Abdou, M., Chong, T.S. and Al
  26. Raeesi, M., 2012. Challenges and key learning for developing tight carbonatereservoirs. Internat. Petrol. Conf. Exhib., Abu Dhabi, UAE (SPE- 161693-MS).
  27. Gresztenkorn, A. and Marfurt, K.J., 1999. Eigen structure-based coherencecomputations as an aid to 3D structural and stratigraphic mapping. Geophysics,64: 1468-79.
  28. Hart, B.S., Pearson, R. and Rawling, G.C., 2002. 3D seismic horizon-based approachesto fracture-swarm sweet spot definition in tight-gas reservoirs. The LeadingEdge, 21: 28-35.
  29. Hunt, L., Reynolds, S., Brown, T., Hadley, S., Downton, J. and Chopra, S., 2010.
  30. Quantitative estimate of fracture density variations in the Nordegg withazimuthal AVO and curvature: a case study. The Leading Edge, 29: 1122-1137.
  31. Jadoon, I.A., Bhatti, K.M., Siddiqui, F.I., Jadoon, S.K., Gilani, S.R. and Afzal, M.,
  32. Subsurface fracture analysis in carbonate reservoirs: Kohat/Potwarplateau, north Pakistan. In SPE/PAPG Ann. Techn. Conf., OnePetro.
  33. Jaumé, S.C. and Lillie, R.J., 1988. Mechanics of the Salt Range - Potwar Plateau,
  34. Pakistan - A fold-and-thrust belt underlain by evaporites. Tectonics, 7: 57-71.
  35. Joshi, R.M. and Singh, K.H., 2020. Carbonate reservoirs: recent large to giant carbonatediscoveries around the world and how they are shaping the carbonate reservoirlandscape. In: Petrophysics and Rock Physics of Carbonate Reservoirs. Springer,Singapore: 3-14.
  36. Lisle, R.J., 1994. Detection of zones of abnormal strains in structures using Gaussiancurvature analysis. AAPG Bull., 78: 1811-1819.
  37. Marfurt, K.J., Kirlin, R.L., Farmer, S.H. and Bahorich, M.S., 1998. 3D seismicattributes using a running window semblance-based algorithm. Geophysics, 63:1150-65.
  38. Murray, G.H. 1968. Quantitative fracture study-sanish pool, Mckenzie County, NorthDakota. AAPG Bull., 52: 57-65.
  39. Nasseri, A., Mohammadzadeh, M.J. and Raeisi, H.T., 2015. Fracture enhancementbased on artificial ants and fuzzy c-means clustering (FCMC) in Dezful
  40. Embayment of Iran. J. Geophys. Engineer., 12: 227-241.
  41. Olson, J.E., Laubach, S.E. and Lander, R.H., 2009. Natural fracture characterization intight gas sandstones: Integrating mechanics and diagenesis. AAPG Bull., 93:1535-1549.
  42. Pedersen, S., Randen, T. and Sonneland, L., 2001. Automatic extraction of faultsurfaces from three-dimensional seismic data. Expanded Abstr., 71st Ann.Internat. SEG Mtg., San Antonio: 551-554.
  43. Pennock, E.S., Lillie, R.J., Zaman, A.S.H. and Yousaf, M. 1989. Structuralinterpretation of seismic reflection data from eastern Salt Range and PotwarPlateau, Pakistan. AAPG Bull., 73: 841-857.
  44. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Saeter, T. and Schlaf,
  45. J., 2000. Three-dimensional texture attributes for seismic dataanalysis. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary, AB: 668-
  46. Roberts, A., 2001. Curvature attributes and their application to 3D interpreted horizons.First Break, 19: 85-100.
  47. Roehl, P.O. and Choquette, P.W., 1985. Perspectives on world-class carbonatepetroleum reservoirs. AAPG Bull., 69: 148.
  48. Spence, G.H., Redfern, J., Aguilera, R., Bevan, T.G., Cosgrove, J.W., Couples, G.D.and Daniel, J.-M., 2015. Advances in the Study of Fractured Reservoirs.Geological Society of London.
  49. Wandrey, C.J., Law, B.E. and Shah, H.A., 2004. Patala-Nammal composite totalpetroleum system, Kohat-Potwar Geologic Province, Pakistan. US GeologicalSurvey, Reston: 1-18.
  50. Wennberg, O.P., Casini, G., Jonoud, S. and Peacock, D.C.P., 2016. The characteristicsof open fractures in carbonate reservoirs and their impact on fluid flow: Adiscussion. Petrol. Geosci., 22: 91-104.
  51. Yasin, Q., Ding, Y., Baklouti, S., Boateng, C.D., Du, Q. and Golsanami, N., 2021. Anintegrated fracture parameter prediction and characterization method in deeplyburied carbonate reservoirs based on deep neural network. J. Petrol. Sci.Engineer.: 109346.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing