ARTICLE

Pilot point parameterization in stochastic inversion for reservoir properties using time-lapse seismic and production data

LONG JIN PAUL L. STOFFA MRINAL K. SEN ROUSTAM. K. SEIF ARMO SENA
Show Less
Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, 10100 Burnet Road, Austin, TX 78758-4445, U.S.A.,
JSE 2009, 18(1), 1–20;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Joint inversion of flow and seismic data for reservoir parameters is a challenging task in that these disparate datasets are sensitive to different physics and model resolutions for the forward problem. The inverse problem is highly non-linear introducing additional complexity. To overcome some of these challenges we have developed a global optimization method based on very fast simulated annealing (VFSA) and a pilot point based model parameterization scheme. Reservoir simulation is used to create the saturation and pressure distribution with time. The simulation results, are converted to seismic properties using an appropriate rock physics model. Seismic modeling is used to create the seismic response. The objective function is defined as a weighted sum of data misfit and prior model misfit and VFSA is used to derive optimal model parameters. Our results from synthetic examples reveal that the VFSA optimization scheme is robust and pilot point model parameterization is able to obtain reasonable descriptions of the reservoir. We further propose a probability based pilot point parameterization, where prior knowledge is used to compute the probability to draw the pilot points. In this way, the model parameters can be reduced further. To incorporate the small scale heterogeneity, we combine the pilot point based inversion method with sequential Gaussian simulation to create stochastic models.

Keywords
seismic flow
time-lapse
VFSA
pilot point
stochastic inversion
References
  1. Bissell, R.C., Dubrule, O., Lamy, P. and Lepine, O., 1997. Combining geostatistical modeling with
  2. gradient information for history matching: the pilot point method. SPE 38730, San Antonio,
  3. Texas.
  4. Christie, M.A. and Blunt, M.J., 2001. Tenth SPE Comparative Solution Project: A Comparison of
  5. Upscaling Techniques. SPE Reservoir Simulation Symposium, Houston, Feb. 11-14. SPE
  6. Deutsch, C.V. and Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide,
  7. 2nd ed., Oxford University Press, New York.
  8. Dong, Y.N., 2005. Integration of time-lapse seismic data into automatic history matching. Ph.D.
  9. dissertation, University of Tulsa, OK.
  10. Hoversten, M.G., Gritto, R., Washbourne, J. and Daley, T., 2003. Pressure and fluid saturation
  11. prediction in a multicomponent reservoir using combined seismic and electromagnetic
  12. imaging. Geophysics, 68: 1580-1591.
  13. Huang, X.R., 2001. Integrating time-lapse seismic with production data: A tool for reservoir
  14. engineering. TLE, 20: 1148-1153.
  15. Ingber, L., 1989. Very fast simulated reannealing. Math. Comput. Modeling, 12: 967-993.
  16. Ingber, L., 1993. Simulated annealing: practice versus theory. Math. Comput. Modell., 18: 29-57.
  17. Jacquard, P. and Jain, C., 1965. Permeability distribution from field pressure data. SPE Bull., 5:
  18. 281-194.
  19. 20 JIN, STOFFA, SEN, SEIF & SENA
  20. Jin, L., Sen, M.K., Stoffa, P.L. and Seif, R.K., 2007. Optimal model parameterization in stochastic
  21. inversion for reservoir properties using time-lapse seismic and production data. Expanded
  22. Abstr., 77th Ann. Internat. SEG Mtg., San Antonio: 1805-1809.
  23. de Marsily, G., Lavedan, G., Boucher, M. and Fasanino, G., 1984. Interpretation of interference
  24. tests in a well field using geostatistical techniques to fit the permeability distribution in a
  25. reservoir model. In: Verly et al. (Eds.), Geostatitics for Natural Resources Characterization,
  26. Part 2. D. Reidel Publ. Co., Dordrecht: 831-849.
  27. Mavko, G., Mukerji, T. and Dvorkin, J., 1998. The Rock Physics Handbook. Cambridge Univ.
  28. Press, Cambridge.
  29. Mohan, K. and Godofredo, P., 2002. Applied Geostatistics for Reservoir Characterization. SPE,
  30. Richardson, TX.
  31. Ramarao, B.S., Lavenue, A.M., de Marsily, G. and Marietta, M.G., 1995. Pilot point methodology
  32. for automated calibration of an ensemble of conditionally simulated transmissivity fields:
  33. theory and computational experiments. Water Resource Res., 31: 475-493.
  34. Sahni, I. and Horne, R.N., 2006. Multiresolution reparameterization and partitioning of model space
  35. for reservoir characterization. Ph.D. dissertation, Stanford University, Stanford, CA.
  36. Sen, M.K. and Stoffa, P.L., 1991. Nonlinear one-dimensional seismic waveform inversion using
  37. simulated annealing. Geophysics, 56: 1624-1638.
  38. Sen, M.K. and Stoffa, P.L., 1992. Rapid sampling of model space using genetic algorithms:
  39. Examples from seismic waveform inversion. Geophys. J. Internat., 108: 281-292.
  40. Sen, M.K. and Stoffa, P.L., 1995. Global Optimization Methods in Geophysical Inversion. Elsevier
  41. Science Publishers, Amsterdam.
  42. Sen, M.K. and Stoffa, P.L., 1996. Bayesian inference, Gibb’s sampler and uncertainty estimation
  43. in geophysical inversion. Geophys. Prosp., 44: 313-350.
  44. Stephen, K.D. and MacBeth, C., 2006. Reducing reservoir prediction uncertainty using seismic
  45. history matching. SPE 100295.
  46. Stoffa, P.L. and Sen, M.K., 1992. Seismic waveform inversion using global optimization. J. Seismic
  47. Explor., 1: 9-27.
  48. Verly, G. and Oliver, D.S., 1994. Incorporation of transient pressure data into reservoir
  49. characterization. In Situ, 18: 243-274.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing