Q-factor estimation from Vertical Seismic Profiling (VSP) with deep learning algorithm, CUDNNLSTM

Azizzadeh Mehmandost Olya, B. and Mohebian, R., 2023. Q-factor estimation from Vertical Seismic Profiling (VSP) with deep learning algorithm, CUDNNLSTM. Journal of Seismic Exploration, 32: 89-104. As seismic reflection waves pass through the different layers and formations of the Earth, they are affected by the attenuation phenomenon that occurs after passing through each layer. One of the most effective and important criteria that can be used in the assessment of attenuation is to check the amount of the Q-value. This value can be used to monitor the amount of attenuation. A key point to remember is that the calculation of Q is always associated with various computational and operational challenges; in other words, the value of Q cannot be calculated in all of the wells that are in a hydrocarbon field. The purpose of this paper is to present an approach to the problem of estimating the Q-factor by using the latest artificial intelligence method, which is deep learning. By using the CUDNNLSTM algorithm in this paper, we were able to estimate the Q-factor accurately. we achieved an accuracy of 98.5% and a validation loss of 1.3% in estimating the Q-factor. With our Q-factor estimating by deep learning, along with speeding up calculations, we will be able to resolve the problem of lacking suitable VSP seismic data to calculate the Q-factor, as well.
- An, Y., 2015. Fracture prediction using prestack Q calculation and attenuation
- anisotropy. Appl. Geophys., 12: 432-440.
- doi:https://doi.org/10.1007/s11770-015-0493-1
- Blias, E., 2012. Accurate interval Q-factor estimation from VSP data. Geophysics, 77(3):
- 1MJ-Z74. doi:https://doi.org/10.1190/geo2011-0270.1
- Castagna, J., Sun, S. and Siegfried, R., 2003. Instantaneous spectral analysis: Detection
- of low-frequency shadows associated with hydrocarbons. The Leading Edge, 22:
- 96-173. doi:https://doi.org/10.1190/1.1559038
- Engelhard, L., 1996. Determination of seismic-wave attenuation by complex trace
- analysis. Geophys. J. Internat., 125: 608-622.
- doi:https://doi.org/10.1111/j.1365-246X.1996.tb00023.x
- Gladwin, M. and Stacey, F., 1974. Anelastic degradation of acoustic pulses in rock. Phys.
- Earth Planet. Inter., 8: 332-336.
- doi:https://doi.org/10.1016/003 1-9201(74)9004 1-7
- Guerra, R. and Leaney, S., 2006. Q(z) model building using walkaway VSP data.
- Geophysics, 71(5). doi:https://doi.org/10.1190/1.2329866
- Haase, A. and Stewart, R.R., 2004. Attenuation estimates from VSP and log data.
- Expanded Abstr., 73rd Ann. Internat. SEG Mtg., Dallas: 2586.
- Hauge, P., 1981. Measurements of attenuation from vertical seismic profiles. Geophysics,
- 46: 1508-1618. doi:https://doi.org/10.1190/1.1441161
- Hochreiter, S. and Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computat.,
- 9:1735-1780. doi:10.1162/neco.1997.9.8.1735
- Jannsen, D., Voss, J. and Theilen, F., 1985. Comparison of methods to determine Q in
- shallow marine sediments from vertical reflection seismograms. Geophys. Prosp.,
- doi:https://doi.org/10.1111/j.1365-2478.1985.tb00762.x
- Levenberg, K., 1944. A method for the solution of certain non-linear problems in least
- squares. Quart. Appl. Mathemat., 2: 164-168.
- Liu, N., Zhang, B., Gao, J., Gao, Z. and Li, S., 2018. Seismic attenuation estimation using
- the modified log spectral ratio method. J. Appl. Geophys., 159: 386-394.
- doi:https://doi.org/10.1016/j.jappgeo.2018.09.014
- Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parameters.
- J. Soc. Industr. Appl. Mathemat., 11: 431-441.
- Matheney, M. and Nowack, R., 1995. Seismic attenuation values obtained from
- instantaneous-frequency matching and spectral ratios. Geophys. J. Internat., 123:
- 1-15. doi:https://doi.org/10.1111/j.1365-246X.1995.tb06658.x
- Mirzanejad, M.T., Tran, K. and Wang, Y., 2022. Three-dimensional Gauss—Newton
- constant-Q viscoelastic full-waveform inversion of near-surface seismic
- wavefields. Geophys. J. Internat., 231:1767-1785.
- doi:https://doi.org/10.1093/gji/ggac287
- Rubino, J., Velis, D. and Holliger, K., 2012. Permeability effects on the seismic response
- of gas reservoirs. Geophys. J. Internat., 189: 448-468.
- doi:https://doi.org/10.1111/j.1365-246X.2011.05322.x
- Sain, K. and Kumar Singh, A., 2011. Seismic quality factors across a bottom simulating
- reflector in the Makran Accretionary Prism, Arabian Sea. Mar. Petrol. Geol., 28:
- 1838-1843. doi:https://doi.org/10.1016/j.marpetgeo.2011.03.013
- Sangwan, P., Kumar, D., Chakraborty, S., Mundayat, V. and Balasubramaniam, M.,
- Nonlinear approach to spectral ratio method for estimation of seismic
- quality factor from VSP data. J. Appl. Geophys., 167: 33-41.
- doi:https://doi.org/10.1016/j.jappgeo.2019.04.001
- Tonn, R., 1990. The determination of the seismic quality factor Q from VSP data: a
- comparison of different computational methods. Geophys. Prosp., 39: 1-27.
- doi:https://doi.org/10.1111/j.1365-2478.1991.tb00298.x
- Turhan Taner, M. and Treitel, S., 2003.. A robust method for Q estimation. Expanded
- Abstr., 73rd Ann. Internat. SEG Mtg., Dallas: 2452.
- doi:https://doi.org/10.1190/1.1818032
- Vesnaver, A., Bohm, G., Busetti, M., Dal Cin, M. and Zgur, F., 2021. Broadband Q-
- factor Imaging for Geofluid Detection in the Gulf of Trieste (Northern Adriatic
- Sea). Solid Earth Geophys., 9: 640194.
- doi:https://doi.org/10.3389/feart.202 1.640194
- Wang, S., Yang, D., Li, J. and Song, H., 2015. Q-factor estimation based on the method
- of logarithmic spectral area difference. Geophysics, 80: 1942-2156.
- doi:https://doi.org/10.1190/geo2014-0257.1
- Xue, Y.-J., Cao, J.-X, Wang, X.-J. and Du, H.-K., 2020. Estimation of seismic quality
- factor in the time-frequency domain using variational mode decomposition.
- Geophysics, 85(4): 1JA-Z18.
- doi:https://doi.org/10.1190/geo2019-0404.1