ARTICLE

Full waveform inversion of viscoelastic medium based on gradient preprocessing

YIPENG XU1,2,3 KAI ZHANG1,2 ZHENCHUN LI1,2 ZILIN HE1,2,3 JICHUAN WANG1,2 JINFENG GAO1,2
Show Less
1 SWPI, School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
2 Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
3 Geophysical Research Institute of Sinopec Shengli Oilfield Corporation, Dongying 257022, P.R. China.,
JSE 2022, 31(6), 579–596;
Submitted: 18 March 2022 | Accepted: 21 September 2022 | Published: 1 December 2022
© 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Xu, Y.P.. Zhang, K., Li, Z.C., He. Z.L.. Wang, J.C. and Gao, J.F., 2022. Full waveform inversion of viscoelastic medium based on gradient preprocessing. Journal of Seismic Exploration, 31: 579-596. The subsurface medium exists mainly in a viscoelastic form, and there are two phenomena: amplitude attenuation and phase dispersion. However, the full waveform inversion is used to inverse the subsurface medium parameters in a large scale way, and the phase dispersion phenomenon is more often solved by migration. Therefore, we investigate the Kelvin-Voigt model with only amplitude attenuation. In this paper, we derive the back propagation wavefield formulation and gradient formulation for full waveform inversion of viscoelastic media based on the Kelvin-Voigt model, and analyze the correctness and feasibility of the method. Also, in viscoelastic media, low velocity geological bodies may cause the gradient of the full waveform inversion to fall into local convergence. It is shown that the gradient preprocessing method based on the pseudo-Hessian operator can suppress the gradient from falling into local convergence. Therefore, this manuscript incorporates a pseudo-Hessian operator for gradient preprocessing and derives a gradient preprocessing formulation for full waveform inversion of viscoelastic media based on gradient preprocessing, which solves the problem that the inversion gradient falls into local convergence. It is demonstrated through examples that the method can solve the problem of the inversion gradient falling into local convergence caused by the low-velocity body in the full waveform inversion of viscoelastic media.

Keywords
viscoelastic media
gradient preprocessing
Kelvin-Voigt model
full waveform inversion
References
  1. Alkhalifah, T., 2015. Conditioning the full-waveform inversion gradient to welcomeanisotropy. Geophysics, 80(3): R111-R122. doi: 10.1190/geo2014-0390.1.
  2. Biondi, B. and Almomin, A., 2012. Tomographic full waveform inversion (TFWI) bycombining full waveform inversion with wave-equation migration velocity analysis.
  3. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1074-1080.
  4. Bozdag, E., Trampert, J. and Tromp, J., 2011. Misfit functions for full waveforminversion based on instantaneous phase and envelope measurements. Geophys. J.
  5. Internat., 185: 845-870. doi: 10.1111/j.1365-246X.2011.04970.x.
  6. Choi, Y. and Alkhalifah, T., 2013. Frequency-domain waveform inversion using thephase derivative. Geophys. J. Internat., 195: 1904-1916. doi: 10.1093/gji/ggt351.
  7. Dong, R., Cai, D.S. and Soichiro, I., 2020. Motion capture data analysis in theinstantaneous frequency-domain using Hilbert-Huang transform. Sensors, 20: 6534.doi: 10.3390/s20226534.
  8. Engquist, B., Froese, B. and Yang, Y., 2016. Optimal transport for seismic fullwaveform inversion. Communic. Mathemat. Sci., 14: 2309-2330. arXiv:1602.01540.
  9. Huang, C.J., Song, H.J. and Lei, W.P., 2019. Instantaneous amplitude-frequency featureextraction for rotor fault based on BEMD and Hilbert Transform. Shock Vibrat., Vol.2019: 1-19. doi:10.1155/2019/1639139.
  10. Huang, S., Ren, C., Li, Z.C., Gu, B.L. and Li, H.M., 2019. Full waveform inversion ofmulti-source elastic waves with longitudinal and transverse wave separation. Petrol.
  11. Geophys. Explor., 54: 1 084-1093. doi: 10.13810/j.cnki.issn. 1000-72 10.2019.05.016.
  12. Li, Z.C., Zhang, H., Liu, Q.M. and Han, W.G., 2007. Numerical simulation of wavefieldseparation by high-order finite difference method with elastic wave interlacing grid.
  13. Petrol. Geophys. Explor., 42: 510-515. doi: CNKI:SUN:SYDQ.0.2007-05-007.
  14. Luo, J.R., Wu, R.S. and Gao, F.C., 2018. Time domain full waveform inversion usinginstantaneous phase with damping. J. Geophys. Engineer., 15: 1032-1041.doi: 10.1088/1742-2140/aaa984.
  15. Luo, J., Wu, R. and Gao, J., 2016. Local minima reduction of seismic envelope inversion.
  16. Chin. J. Geophys., 59: 2510-2518. doi: 10.6038/cjg20160716.
  17. Métivier, L., Brossier, R., Mérigot, Q., Oudet, E. and Virieux, J., 2016. An optimaltransport approach for seismic tomography: application to 3D full waveforminversion. Inverse Probl., 32: 115008. doi: 10.1088/0266-561 1/32/11/115008/meta.
  18. Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
  19. Geophysics, 52: 1211-1228. doi: 10.1190/1.1442384.
  20. Pratt, R.G., Shin, C. and Hick, G.J., 1998. Gauss-Newton and full Newton methods infrequency-space seismic waveform inversion. Geophys. J. Internat.,, 133: 341-362.doi: 10.1046/j.1365-246X.1998.00498.x.
  21. Raknes, E. and Arntsen, B., 2014. Strategies for elastic full waveform inversion.
  22. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 1222-1226.
  23. Ren, Z.M. and Liu, Y., 2016. A hierarchical elastic full-waveform inversion schemebased on wavefield separation and the multistep-length approach. Geophysics, 81(3):R99-R123. doi: 10.1190/geo2015-0431.1
  24. Shah, N.K., Warner, M.R., Washbourne, J.K., Guasch, L. and Umpleby, A., 2012. Aphase-unwrapped solution for overcoming a poor starting model in full-wavefieldinversion. Extended Abstr., 74th EAGE Conf., Copenhagen: P014.
  25. Shin, C. and Ho, C.Y., 2009. Waveform inversion in the Laplace-Fourier domain.
  26. Geophys. J. Internat., 177: 1067-1079. doi: 10.1111/).1365-246X.2009.04102.x.
  27. Tarantola, A., 1987. Inverse problem theory: Methods for data fitting and modelparameter estimation. Elsevier Science Publ. Co., Inc., New York.
  28. Tristan, V.L. and Felix, J-H., 2013. Mitigating local minima in full-waveform inversionby expanding the search space. Geophys. J. Internat., 195: 661-667.doi: 10.1093/gji/ggt258.
  29. Wang, B., Jakobsen, M., Wu, R.S,, Lu, W. and Chen, X., 2017. Accurate and efficientvelocity estimation using Transmission matrix formalism based on the domaindecomposition method. Inverse Probl., 33: 035002.doi: 10.1088/1361-6420/aa5998.
  30. Wang, T.F. and Cheng, J.B., 2017. Elastic full waveform inversion based on modedecomposition: The approach and mechanism. Geophys. J. Internat.,, 209: 606-622.doi:10.1093/gji/ggx038.
  31. Warner, M., Lluis, G. and Gang, Y., 2015. Adaptive waveform inversion-FWI withoutcycle skipping. Expanded Abstr., 85th Ann. Internat. SEG Mtg,, New Orleans: 11-14.
  32. Wu, R.S., Luo, J.R. and Wu, B.Y., 2014, Seismic envelope inversion and modulationsignal model. Geophysics, 79(10): WA13-WA24. doi: 10.1190/ge02013-0294.1.
  33. Xu, Y.P., Ren, Z.M., L,i Z.C., Liu, C., He, Z.L. and Chen, J.M., 2020. First-orderapproximate instantaneous frequency time domain acoustic full waveform inversion.Petrol. Geophys. Explor., 55: 1029-1038.doi: 10.13810/j.cnki.issn.1000-7210.2020.05.011.
  34. Yang, Y., Engquist, B., Sun, J. and Hamfeldt, B.F., 2018. Application of optimaltransport and the quadratic Wasserstein metric to full-waveform inversion.
  35. Geophysics, 83(1): R43-R62. doi:10.1190/ge02016-0663.1.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing