Discontinuous Galerkin method for solving 2D dissipative seismic wave equations

He, X.J., Qui, C.J. and Sun, J.Q., 2022. Discontinuous Galerkin method for solving 2D dissipative seismic wave equations. Journal of Seismic Exploration, 31: 153-176. Seismic dissipation widely exists in underground media. To develop a detailed understanding of wave propagation in dissipative media, in this study, we introduce a discontinuous Galerkin (DG) method for solving acoustic and elastic wave equations in D’Alembert media. This method uses the numerical flux-based DG formulations with the explicit 3rd-order total variation diminishing (TVD) time discretization. We first derive an empirical formula for numerical stability conditions, which shows that the relative error of the Courant-Friedrichs-Lewy (CFL) condition numbers between the actual the numerical cases does not exceed 3%. The analyses also show that both the dispersion and dissipation in D’Alembert media are frequency dependent, and have a strong correlation with the dissipation factor. Finally, we present some numerical experiments. The quantitative comparisons of the attenuation ratios of the waveforms show that they are close to the theoretical ones, verifying the findings of the analyses. In particular, for elastic waves, the relative errors between the numerical attenuation ratios and the theoretical ones do not exceed 4%. The simulation of dissipative elastic wave propagation in a model with surface topography indicates our method is capable of dealing with complex geometry.
- Aki, K. and Richards, P.G., 2002. Quantitative seismology. W.H. Freeman & Co, San
- Francisco.
- Ba, J., Xu, W., Fu, L.Y., Carcione, J.M. and Zhang, L., 2017. Rock anelasticity due to
- patchy saturation and fabric heterogeneity: A double double-porosity model of wave
- propagation. J. Geophys. Res.-Solid Earth, 122: 1949-1976.
- Cai, W., Zhang, H. and Wang, Y., 2017. Dissipation-preserving spectral element method
- for damped seismic wave equations. J. Computat. Phys., 350: 260-279.
- Carcione, J.M., 1993. Seismic modeling in viscoelastic media. Geophysics, 58: 110-120.
- Carcione, J.M. and Cavallini, F., 1994. A rheological model for anelastic anisotropic
- media with applications to seismic wave propagation. Geophys. J. Internat., 119:
- 338-348.
- Carcione, J.M. and Quiroga-Goode, G., 1995. Some aspects of the physics and numerical
- modeling of Biot compressional waves. J. Computat. Acoust., 3: 261-280.
- Cockburn, B. and Shu, C.W., 1989. TVB Runge-Kutta local projection discontinuous
- Galerkin finite element method for conservation laws: II. General framework.
- Mathemat. Computat., 52: 411-435.
- de Basabe, J.D., Sen, M.K. and Wheeler, M.F., 2008. The interior penalty discontinuous
- Galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Internat.,
- 175: 83-93.
- de Hoop, A., 1960. A modification of Cagniard’s method for solving seismic pulse
- problems. Appl. Sci. Res. Sec., B 8: 349-356.
- de la Puente, J., Dumbser, M., Kaser, M. and Igel, H., 2008. Discontinuous Galerkin
- methods for wave propagation in poroelastic media. Geophysics, 73(5): T77-T97.
- Emmerich, H. and Korn, M., 1987. Incorporation of attenuation into time domain
- computations of seismic wave fields. Geophysics, 52: 1252-1264.
- Etienne, V., Chaljub, E., Virieux, J. and Glinsky, N., 2010. An hp-adaptive
- discontinuous Galerkin finite-element method for 3-D elastic wave modelling.
- Geophys. J. Internat., 183: 941-962.
- Ferroni, A., Antonietti, P. F., Mazzieri, I. and Quarteroni, A., 2017. Dispersion-
- dissipation analysis of 3-D continuous and discontinuous spectral element methods
- for the elastodynamics equation. Geophys. J. Internat., 211: 1554-1574.
- He, X.J., Yang, D.H. and Wu, H., 2015. A weighted Runge-Kutta discontinuous
- Galerkin method for wavefield modelling. Geophys. J. Internat., 200: 1389-1410.
- Hestholm, S., 1999. Three-dimensional finite-difference viscoelastic wave modelling
- including surface topography. Geophys. J. Internat., 139: 852-878.
- Hu, F.Q., Hussaini, M.Y. and Rasitarinera, P., 1999. An analysis of the discontinuous
- Galerkin method for wave propagation problems. J. Computat. Phys., 151: 921-946.
- Kaser, M. and Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkin
- method for elastic waves on unstructured meshes - I: The two-dimensional isotropic
- case with external source terms. Geophys. J. Internat., 166: 855-877.
- Kaser, M., Dumbser, M., de La Puente, J. and Igel, H., 2007. An arbitrary high-order
- Discontinuous Galerkin method for elastic waves on unstructured meshes-III.
- Viscoelastic attenuation. Geophys. J. Internat., 168: 224-242.
- Kristek, J. and Moczo, P., 2003. Seismic-wave propagation in viscoelastic media with
- material discontinuities: a 3D fourth-order staggered-grid finite-difference modeling.
- Bull. Seismol. Soc. Am., 93: 2273-2280.
- Lahivaara, T. and Huttunen, T., 2010. A non-uniform basis order for the discontinuous
- Galerkin method of the 3D dissipative wave equation with perfectly matched layer. J.
- Computat. Phys., 229: 5144-5160.
- Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid. Phil.
- Trans. Roy. Soc. London., Ser. A., 203: 1-42.
- Lambrecht, L., Lamert, A., Friederich, W. MGller, T. and Boxberg, M.S., 2018. A nodal
- discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex
- geological media. Geophys. J. Internat., 212: 1570-1587.
- Li, Q.Y., Yi, D.Y. and Wang, N.C., 2008. Numerical Analysis. Tsinghua University
- Press (in Chinese).
- McLachlan, R.I. and Quispel, G.R.W., 2002. Splitting methods. Acta Numer., 11:
- 341-434.
- Moczo, P. and Kristek, J., 2005. On the rheological models used for time-domain
- methods of seismic wave propagation. Geophys. Res. Lett., 32: L01306.
- Moczo, P., Kristek, J. and Halada, L., 2000. 3D fourth-order staggered-grid
- finite-difference schemes: Stability and grid dispersion. Bull. Seismol. Soc. Am., 90:
- 587-603.
- Niu, B.H. and Sun C.Y., 2007. Half-Space homogeneous isotropic--viscoelastic medium
- and seismic wave propagation (in Chinese). Geological Publishing House, Beijing.
- Reed, W.H. and Hill, T., 1973. Triangular mesh methods for the neutron transport
- equation. Los Alamos Scientific Lab., New Mex., U.S.A.
- Riviere, B., Shaw, S. and Whiteman, J.R., 2007. Discontinuous Galerkin finite element
- methods for dynamic linear solid viscoelasticity problems. Numerical Methods for
- Partial Differential Equations, 23:1149-1166.
- Robertsson, J.O., Blanch, J.O. and Symes, W.W., 1994. Viscoelastic finite-difference
- modeling. Geophysics, 59: 1444-1456.
- Sarmany, D., Botchev, M.A. and van der Vegt, J.J., 2007. Dispersion and dissipation
- error in high-order Runge-Kutta discontinuous Galerkin discretisations of the
- Maxwell equations. J. Scient. Comput., 33: 47-74.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress
- finite-difference method. Geophysics, 51: 889-901.
- Wang, N., Li, J., Borisov, D., Gharti, H.N., Shen, Y., Zhang, W. and Savage, B., 2019.
- Modeling three-dimensional wave propagation in anelastic models with surface
- topography by the optimal strong stability preserving Runge-Kutta method. J.
- Geophys. Res.: Solid Earth, 124: 890-907.
- Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A
- predictor-corrector method of the Implicit Runge-Kutta Scheme. J. Seismic Explor.,
- 23: 431-462.
- Wilcox, L.C., Stadler, G., Burstedde, C. and Ghattas, O., 2010. A high-order
- discontinuous Galerkin method for wave propagation through coupled
- elastic—acoustic media. J. Computat. Phys., 229: 9373-9396.
- Yang, D., He, X., Ma, X., Zhou, Y. and Li, J., 2016. An optimal nearly analytic
- discrete-weighted Runge-Kutta discontinuous Galerkin hybrid method for acoustic
- wavefield modeling. Geophysics, 81(5): T251-T263.
- Yang, H.Z. and Du, Q.Z., 2003. Finite-element methods for viscoelastic and azimuthally
- anisotropic media. Acta Phys. Sinica (in Chinese), 52: 2010-2014.