Optimization of staggered grid finite-difference coefficients based on conjugate gradient method

The implementation of difference coefficients optimization strategy can effectively suppress numerical dispersion and improve the modeling accuracy. The conventional difference coefficients calculation method based on Taylor-series Expansion exists serious numerical dispersion. In this paper, we derive a new dispersion error function from the dispersion relation, and the optimal difference coefficients are obtained iteratively by using the conjugate gradient method, thus a staggered-grid difference coefficients optimization method based on the conjugate gradient is developed. We compare dispersion curves, snapshots and single shot records using low-velocity model, high-velocity model and Marmousi model, the results show that the new method can effectively reduce the numerical dispersion compared with the difference coefficients of the conventional Taylor-series Expansion method. The 8th-order optimized difference operators can achieve the modeling precision of 12th-order Taylor-series Expansion difference operators, which can effectively save calculation time and internal storage. The optimization method performs well for both simple model and complex model forward modeling.
- Alterman, Z.S. and Karal, F.C.J., 1968. Propagation of elastic waves in layered media by
- finite-difference methods. Bull. Seismol. Soc. Am., 58: 367-398.
- Chu, C. and Stoffa, P.L., 2012. Determination of finite-difference weights using scaled
- binomial windows. Geophysics, 77(3): W17-W26.
- Etgen, J.T., 2007. A tutorial on optimizing time domain finite-difference schemes:
- “Byond Holberg”. Technical Report, 33-43.
- Fei, T. and Larner, K., 1995. Elimination of numerical dispersion in finite-difference
- modeling and migration by flux-corrected transport. Geophysics, 60: 1830-1842.
- Fornberg, B., 1987. The pseudospectral method: Comparisons with finite differences for
- the elastic wave equation. Geophysics, 52: 483-501.
- Huang, J.P., Qu, Y.M., Li, Q.Y., Li, Z.C., Li, G.L., Bu, C.C. and Teng, H.H., 2015.
- Variable-coordinate forward modeling of irregular surface based on dual-variable
- grid. Appl. Geophys., 12: 101-110.
- Igel, H., Mora, P. and Riollet, B., 1995. Anisotropic wave propagation through
- finite-difference grids. Geophysics, 60: 1203-1216.
- Liu, Y. and Sen, M.K., 2011. 3D acoustic wave modelling with time-space domain
- dispersion-relation-based finite-difference schemes and hybrid absorbing boundary
- conditions. Explor. Geophys., 42: 176.
- Liu, Y., 2013. Globally optimal finite-difference schemes based on least-squares.
- Geophysics, 78(4): T113-T132.
- Madariaga, R., 1976. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am.,
- 66: 639-666.
- Ren, Y.J., Huang, J.P., Yong, P., Liu, M.L., Cui, C. and Yang, M.W., 2018. Optimized
- staggered-grid finite-difference operators using window functions. Appl. Geophys.,
- 15: 253-260.
- Ren, Z. and Liu, Y., 2015. Acoustic and elastic modeling by optimal time-space-domain
- staggered-grid finite-difference schemes. Geophysics, 80(1): T17-T40.
- Tong, S.Y., Chen, M., Zhou, H.W., Li, L.W., Xu, X.G. and Wu, Z.Q., 2019.
- Reverse-time migration of converted S-waves of varying densities. J. Ocean Univ.
- China, 18:1093-1097.
- Virieux, J., 1984. SH-wave propagation in heterogeneous media: velocity-stress
- finite-difference method. Explor. Geophys., 15: 265-265.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media; velocity-stress
- finite-difference method. Geophysics, 51: 889-901.
- Virieux, J., Calandra, H. and Plessix, R.E., 2011. A review of the spectral,
- pseudo-spectral, finite-difference and finite-element modelling techniques for
- geophysical imaging. Geophys. Prosp., 59: 794-813.
- Yang, L., Yan, H.Y. and Liu, H., 2014. Least squares staggered-grid finite-difference for
- elastic wave modelling. Explor. Geophys., 45: 255-260.
- Yang, L., Yan, H.Y. and Liu, H., 2017. Optimal staggered-grid finite-difference schemes
- based on the minimax approximation method with the Remez algorithm.
- Geophysics, 82(1): T27-T42.
- Yee, K.S., 1966. Numerical solution of initial boundary value problems involving
- Maxwell's equations in isotropic media. IEEE Transact. Anten. Propagat., 14:
- 302-307.
- Yong, P., Huang, J.P., Li, Z.C., Liao, W.Y., Qu, L.P., Li, Q.Y. and Liu, P.J., 2017.
- Optimized equivalent staggered-grid FD method for elastic wave modelling based
- on plane wave solutions. Geophys. J. Internat., 208: 1157-1172.
- Zhang, J.H. and Yao, Z.X., 2013. Optimized explicit finite-difference schemes for spatial
- derivatives using maximum norm. J. Computat. Phys., 250: 511-526.
- Zhou, B. and Greenhalgh, S., 1992. Seismic scalar wave equation modeling by a
- convolutional differentiator. Bull. Seismol. Soc. Am., 82: 289-303.
- Zhou, H. and Zhang, G., 2011. Prefactored optimized compact finite-difference schemes
- for second spatial derivatives. Geophysics, 76(5): S87.