Seismic AVOaz inversion in low-loss viscoelastic orthorhombic medium

Ge, Z.J., Pan, S.L., Li, J.Y., Huang, J.B., Luo, H.R. and He, J., 2001. Seismic AVOaz inversion in low-loss viscoelastic orthorhombic medium. Journal of Seismic Exploration, 30: 545-560. The real shale reservoirs are conventionally equivalent to the orthorhombic medium, which contains a large number of high angle fractures and strong horizontal bedding properties. The attenuation effect due to frequency-dependent absorption and wave-front divergence can reveal the location of oil and gas reservoirs. Weak anisotropy parameters (WA) and fracture compliances provide additional brittleness and fluid type information in the description of orthorhombic anisotropy (OA). In this paper, the complex WA parameters and fracture compliances associated with inverse quality factors are introduced into the reflection coefficient of OA medium. After a series of simplifications and derivations, a linear reflection coefficient formula with attenuation term expressed by integrated attenuation factor is available. Integrated attenuation factor refers to the product of inverse quality factors of dissipative background and fracture. Finally, WA parameters, fracture compliances and integrated inverse quality factors can be estimated by amplitude versus offset and azimuth (AVOA) inversion based on Bayesian frame. When applied to synthetic multi-azimuth angle gathers with signal-to-noise ratio (SNR) of 2, the proposed method shows reliable stability and accuracy.
- Aki, K. and Richards, P.G., 2002. Quantitative Seismology. University Science Books,
- New York.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2000. Estimation of fracture parameters from
- reflection seismic data. Part I: HTI model due to a single fracture set. Geophysics,
- 65: 1788-1802.
- Biot, M.A., 1962. Generalized theory of acoustic propagation in porous dissipative
- media. J. Acoust. Soc. Am., 34: 1254-1264.
- Buland, A. and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68:
- 185-198.
- Chen, H. and Innanen, K.A., 2018. Estimation of fracture weaknesses and integrated
- attenuation factors from azimuthal variations in seismic amplitudes. Geophysics, 83:
- 1-65.
- Chen, H., Innanen, K.A. and Chen, T., 2018. Estimating P- and S-wave inverse quality
- factors from observed seismic data using an attenuative elastic impedance.
- Geophysics, 83(ISSUE No. ???): R173-R187.
- Chapman, M., 2003. Frequency-dependent anisotropy due to meso-scale fractures in the
- presence of equant porosity. Geophys. Prosp., 51: 369-379.
- Chapman, M., Liu, E. and Li, X.Y., 2006. The influence of fluid sensitive dispersion and
- attenuation on AVO analysis, Geophys. J. Internat., 167: 89-105.
- Chapman, M., Zatsepin, S.V. and Crampin, S., 2002. Derivation of a microstructural
- poroelastic model, Geophys. J. Internat., 151: 427-451.
- Chichinina, T., Sabinin, V. and Ronquillo-Jarillo, G., 2006. QVOA analysis: P-wave
- attenuation anisotropy for fracture characterization, Geophysics, 71(ISSUE No.
- 222), C37-C48.
- Dvorkin, J. and Mavko, G., 2006. Modeling attenuation in reservoir and nonreservoir
- rock. The Leading Edge, 25: 194-197.
- Dvorkin, J., Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks,
- Geophysics, 60: 97-107.
- Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A unified model with the squirt
- and the Biot mechanisms. Geophysics, 58: 524-533.
- Far, M.E., Sayers, C.M., Thomsen, L., Han, D. and Castagna, J.P., 2013. Seismic
- characterization of naturally fractured reservoirs using amplitude versus offset and
- azimuth analysis. Geophys. Prosp., 61: 427-447.
- Ge, Z.J., Li, J.-Y., Chen, X.H., Wu, J.L. and Yu, X., 2018. Bayesian linearized AVAZ
- inversion for fracture weakness parameters in TTI medium. Chin. J. Geophys., 61:
- 3008-3018 (in Chinese).
- Ge, Z.J., Pan, S.L. and Li, J-Y., 2020. Seismic AVOA inversion for weak anisotropy
- parameters and fracture density in a monoclinic medium, Appl. Sci., 10: 5136.
- Hill, R., 1963. Elastic properties of reinforced solids: Some theoretical principles. J.
- Mechan. Phys. Solids, 11: 357-372.
- Hsu, C.J. and Schoenberg, M., 1993. Elastic waves through a simulated fractured
- medium. Geophysics, 58: 964-977.
- Hudson, J., Liu, E. and Crampin, S., 1996. The mechanical properties of materials with
- interconnected cracks and pores. Geophys. J. Internat., 124: 105-112.
- Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook: Tools for
- Seismic Analysis of Porous Media (2nd ed.). Cambridge University Press,
- Cambridge.
- Moradi, S. and Innanen, K.A., 2017. Born scattering and inversion sensitivities in
- viscoelastic transversely isotropic media. Geophys. J. Internat., 211: 1177-1188.
- Pan, S. L., Yan, K., Lan, H.Q. and Qin, Z.Y., 2019. A Bregman adaptive sparse-spike
- deconvolution method in the frequency domain, Appl. Geophys., 16: 463-472.
- Pan, S.L., Yan, K., Lan, H.Q., Badal J. and Qin, Z.Y., 2020a, Adaptive step-size fast
- iterative shrinkage-thresholding algorithm and sparse-spike deconvolution. Comput.
- Geosci., 134: 104343.
- Pan, S.L., Yan, K., Lan, H.Q., Badal, J. and Qin, Z.Y., 2020b. A sparse spike
- deconvolution algorithm based on a recurrent neural network and the iterative
- shrinkage-thresholding algorithm. Energies, 13: 3074.
- Pointer, T., Liu, E. and Hudson, J.A., 2000. Seismic wave propagation in cracked porous
- media. Geophys. J. Internat., 142: 199-231.
- PSencik, I. and Martins, J.L., 2001. Properties of weak contrast PP
- reflection/transmission coefficients for weakly anisotropic elastic media. Studia
- Geophys. Geodaet., 45: 176-199.
- Sayers, C.M., 2009. Seismic characterization of reservoirs containing multiple fracture
- sets. Geophys. Prosp., 57: 187-192.
- Sayers, C.M. and Kachanov, M., 1995. Microcrack-induced elastic wave anisotropy of
- brittle rocks. J. Geophys. Res., 100: 4149-4156.
- Schoenberg, M. and Sayers, C.M., 1995. Seismic anisotropy of fractured rock.
- Geophysics, 60: 204-211.
- Worthington, M.H., 2008. Interpreting seismic anisotropy in fractured reservoirs. First
- Break, 26: 57-63.
- Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transversely
- isotropic media. Geophysics, 71(ISSUE No. ???): T17-T30.