ARTICLE

Seismic AVOaz inversion in low-loss viscoelastic orthorhombic medium

ZIJIAN GE1 SHULIN PAN1 JINGYE LI2 JIANBO HUANG3 HAORAN LUO4 JIANG HE1
Show Less
1 School of Geosciences and Technology, Southwest Petroleum University, Chengdu 610500, P.R. China.,
2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P.R. China.,
3 Engineering Technology Research Institute, Xinjiang Oilfield Company, Karamay 830011, P.R. China.,
4 Shale Gas Research Institute, Petro China Southwest Oil & Gasfield Company, Chengdu 610051, P.R. China.,
JSE 2021, 30(6), 545–560;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ge, Z.J., Pan, S.L., Li, J.Y., Huang, J.B., Luo, H.R. and He, J., 2001. Seismic AVOaz inversion in low-loss viscoelastic orthorhombic medium. Journal of Seismic Exploration, 30: 545-560. The real shale reservoirs are conventionally equivalent to the orthorhombic medium, which contains a large number of high angle fractures and strong horizontal bedding properties. The attenuation effect due to frequency-dependent absorption and wave-front divergence can reveal the location of oil and gas reservoirs. Weak anisotropy parameters (WA) and fracture compliances provide additional brittleness and fluid type information in the description of orthorhombic anisotropy (OA). In this paper, the complex WA parameters and fracture compliances associated with inverse quality factors are introduced into the reflection coefficient of OA medium. After a series of simplifications and derivations, a linear reflection coefficient formula with attenuation term expressed by integrated attenuation factor is available. Integrated attenuation factor refers to the product of inverse quality factors of dissipative background and fracture. Finally, WA parameters, fracture compliances and integrated inverse quality factors can be estimated by amplitude versus offset and azimuth (AVOA) inversion based on Bayesian frame. When applied to synthetic multi-azimuth angle gathers with signal-to-noise ratio (SNR) of 2, the proposed method shows reliable stability and accuracy.

Keywords
seismic anisotropy
attenuation
inversion theory
orthorhombic medium
References
  1. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. University Science Books,
  2. New York.
  3. Bakulin, A., Grechka, V. and Tsvankin, I., 2000. Estimation of fracture parameters from
  4. reflection seismic data. Part I: HTI model due to a single fracture set. Geophysics,
  5. 65: 1788-1802.
  6. Biot, M.A., 1962. Generalized theory of acoustic propagation in porous dissipative
  7. media. J. Acoust. Soc. Am., 34: 1254-1264.
  8. Buland, A. and Omre, H., 2003. Bayesian linearized AVO inversion. Geophysics, 68:
  9. 185-198.
  10. Chen, H. and Innanen, K.A., 2018. Estimation of fracture weaknesses and integrated
  11. attenuation factors from azimuthal variations in seismic amplitudes. Geophysics, 83:
  12. 1-65.
  13. Chen, H., Innanen, K.A. and Chen, T., 2018. Estimating P- and S-wave inverse quality
  14. factors from observed seismic data using an attenuative elastic impedance.
  15. Geophysics, 83(ISSUE No. ???): R173-R187.
  16. Chapman, M., 2003. Frequency-dependent anisotropy due to meso-scale fractures in the
  17. presence of equant porosity. Geophys. Prosp., 51: 369-379.
  18. Chapman, M., Liu, E. and Li, X.Y., 2006. The influence of fluid sensitive dispersion and
  19. attenuation on AVO analysis, Geophys. J. Internat., 167: 89-105.
  20. Chapman, M., Zatsepin, S.V. and Crampin, S., 2002. Derivation of a microstructural
  21. poroelastic model, Geophys. J. Internat., 151: 427-451.
  22. Chichinina, T., Sabinin, V. and Ronquillo-Jarillo, G., 2006. QVOA analysis: P-wave
  23. attenuation anisotropy for fracture characterization, Geophysics, 71(ISSUE No.
  24. 222), C37-C48.
  25. Dvorkin, J. and Mavko, G., 2006. Modeling attenuation in reservoir and nonreservoir
  26. rock. The Leading Edge, 25: 194-197.
  27. Dvorkin, J., Mavko, G. and Nur, A., 1995. Squirt flow in fully saturated rocks,
  28. Geophysics, 60: 97-107.
  29. Dvorkin, J. and Nur, A., 1993. Dynamic poroelasticity: A unified model with the squirt
  30. and the Biot mechanisms. Geophysics, 58: 524-533.
  31. Far, M.E., Sayers, C.M., Thomsen, L., Han, D. and Castagna, J.P., 2013. Seismic
  32. characterization of naturally fractured reservoirs using amplitude versus offset and
  33. azimuth analysis. Geophys. Prosp., 61: 427-447.
  34. Ge, Z.J., Li, J.-Y., Chen, X.H., Wu, J.L. and Yu, X., 2018. Bayesian linearized AVAZ
  35. inversion for fracture weakness parameters in TTI medium. Chin. J. Geophys., 61:
  36. 3008-3018 (in Chinese).
  37. Ge, Z.J., Pan, S.L. and Li, J-Y., 2020. Seismic AVOA inversion for weak anisotropy
  38. parameters and fracture density in a monoclinic medium, Appl. Sci., 10: 5136.
  39. Hill, R., 1963. Elastic properties of reinforced solids: Some theoretical principles. J.
  40. Mechan. Phys. Solids, 11: 357-372.
  41. Hsu, C.J. and Schoenberg, M., 1993. Elastic waves through a simulated fractured
  42. medium. Geophysics, 58: 964-977.
  43. Hudson, J., Liu, E. and Crampin, S., 1996. The mechanical properties of materials with
  44. interconnected cracks and pores. Geophys. J. Internat., 124: 105-112.
  45. Mavko, G., Mukerji, T. and Dvorkin, J., 2009. The Rock Physics Handbook: Tools for
  46. Seismic Analysis of Porous Media (2nd ed.). Cambridge University Press,
  47. Cambridge.
  48. Moradi, S. and Innanen, K.A., 2017. Born scattering and inversion sensitivities in
  49. viscoelastic transversely isotropic media. Geophys. J. Internat., 211: 1177-1188.
  50. Pan, S. L., Yan, K., Lan, H.Q. and Qin, Z.Y., 2019. A Bregman adaptive sparse-spike
  51. deconvolution method in the frequency domain, Appl. Geophys., 16: 463-472.
  52. Pan, S.L., Yan, K., Lan, H.Q., Badal J. and Qin, Z.Y., 2020a, Adaptive step-size fast
  53. iterative shrinkage-thresholding algorithm and sparse-spike deconvolution. Comput.
  54. Geosci., 134: 104343.
  55. Pan, S.L., Yan, K., Lan, H.Q., Badal, J. and Qin, Z.Y., 2020b. A sparse spike
  56. deconvolution algorithm based on a recurrent neural network and the iterative
  57. shrinkage-thresholding algorithm. Energies, 13: 3074.
  58. Pointer, T., Liu, E. and Hudson, J.A., 2000. Seismic wave propagation in cracked porous
  59. media. Geophys. J. Internat., 142: 199-231.
  60. PSencik, I. and Martins, J.L., 2001. Properties of weak contrast PP
  61. reflection/transmission coefficients for weakly anisotropic elastic media. Studia
  62. Geophys. Geodaet., 45: 176-199.
  63. Sayers, C.M., 2009. Seismic characterization of reservoirs containing multiple fracture
  64. sets. Geophys. Prosp., 57: 187-192.
  65. Sayers, C.M. and Kachanov, M., 1995. Microcrack-induced elastic wave anisotropy of
  66. brittle rocks. J. Geophys. Res., 100: 4149-4156.
  67. Schoenberg, M. and Sayers, C.M., 1995. Seismic anisotropy of fractured rock.
  68. Geophysics, 60: 204-211.
  69. Worthington, M.H., 2008. Interpreting seismic anisotropy in fractured reservoirs. First
  70. Break, 26: 57-63.
  71. Zhu, Y. and Tsvankin, I., 2006. Plane-wave propagation in attenuative transversely
  72. isotropic media. Geophysics, 71(ISSUE No. ???): T17-T30.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing