ARTICLE

Enhancing the signal-to-noise ratio of sonic logging waveforms by super-virtual interferometric stacking

ALI A. DAWOOD ABDUL LATIF AL-SHUHAIL ABDULRAHMAN AL-SHUHAIL
Show Less
Saudi Aramco, Office 208 Bldg. 137, Dhahran, 31311, Saudi Arabia,
JSE 2021, 30(3), 237–255;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dawood, A.A., Al-Shuhail, A. and Alshuhail, A., 2021. Enhancing the signal-to-noise ratio of sonic logging waveforms by super-virtual interferometric stacking. Journal of Seismic Exploration, 30: 237-255. Sonic logs are essential tools for reliably identifying interval velocities, which, in turn, are used in many seismic processes. Borehole irregularities and washout zones along the borehole surface can cause the signal-to-noise ratio of recorded sonic waveforms to be quite low. Noisy borehole conditions can decrease the signal-to-noise ratio and mask the signal recorded by the receiver stations. To mitigate this problem, we have extended the theory of super-virtual refraction interferometric stacking to enhance the signal-to-noise ratio of sonic waveforms. This theory is composed of two redatuming steps followed by a stacking operation. The first redatuming procedure is of correlation type, where sonic waveforms are correlated with each other to obtain virtual waveforms with the sources datumed to the refractor. The second datuming step is of convolution type, where virtual sonic waveforms are convolved with the recorded waveforms to de-atum the sources back to their original positions. The stacking procedure following each step enhances the signal-to-noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces spurious events known as correlation artifacts in the super-virtual dataset. To overcome this problem, we replace the correlation-type datuming step by a deconvolution-type datuming step. Although the cross-correlation-based datuming method is more robust, the deconvolution-based datuming method significantly suppresses the spurious artifacts. To limit the noise amplification effect caused by the deconvolution step, we add a non-zero regularization parameter to stabilize the deconvolution of the virtual sonic waveforms. Our tests on synthetic and real data examples show remarkable signal-to-noise ratio enhancement of refracted P-wave arrivals in the sonic waveforms. These tests further demonstrate how the use of deconvolution-type datuming instead of the conventional correlation-type datuming may significantly suppress the correlation artifacts. The semblance analysis lemonstrated that the super-virtual sonic waveforms yields more robust formation velocities compared to the raw waveforms.

Keywords
Interferometry
Redatuming
Cross-Correlation
Convolution
Sonic
References
  1. Al-Hagan, O., Hanafy, S. and Schuster, G., 2014. Iterative supervirtual refraction
  2. interferometry. Geophysics, 79(3): Q21-Q30.
  3. Alshuhail, A., Dawood, A.A. and Hanafy, S., 2012. Application of super-virtual seismic
  4. refraction interferometry to enhance first arrivals: A case study from Saudi
  5. Arabia. The Leading Edge, 31: 34-39.
  6. Al-Shuhail, A, 2011. Estimation of direct-arrival velocity using the linear moveout
  7. velocity analysis method with application from eastern Saudi Arabia. J. Geophys.
  8. Engineer., 8: 524-530.
  9. An, S., Hu, T., Liang, X. and Peng, G., 2014. Stable method to pick first-arrival
  10. refractions on undulating surface. Beijing Internat. Geophys. Conf. : 346-348.
  11. Bendat, J.S. and Piersol, A.G., 2011. Random Data: Analysis and Measurement
  12. Procedures. John Wiley & Sons, New York, 729 pp.
  13. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P.,
  14. Shapiro, N.M. and Yang, Y., 2007. Processing seismic ambient noise data to
  15. obtain reliable broad-band surface wave dispersion measurements. Geophys. J.
  16. Internat., 169: 1239-1260.
  17. Bharadwaj, P., Schuster, G., Mallinson, I. and Dai, W., 2012. Theory of supervirtual
  18. refraction interferometry. Geophys. J. Internat., 188: 263-273.
  19. Chavez-Garcia, F.J. and Luzon, F., 2005. On the correlation of seismic microtremors.
  20. J. Geophys. Res., Solid Earth, 110: B11313.
  21. Claerbout, J.F., 1992. Earth Soundings Analysis: Processing versus Inversion. Blackwell
  22. Science, Oxford.
  23. Draganov, D., Campman, X., Thorbecke, J., Verdel, A. and Wapenaar, K., 2009.
  24. Reflection images from ambient seismic noise. Geophysics, 74(5): A63-A67.
  25. Forghani, F. and Snieder, R., 2010. Underestimation of body waves and feasibility of
  26. surface-wave reconstruction by seismic interferometry. The Leading Edge, 29:
  27. 790-794.
  28. Gao, H. and Zhang, J., 2017. 3D seismic residual statics solutions derived from refraction
  29. interferometry. Geophys. Prosp., 65: 1527-1540.
  30. Goldberg, D., Guerin, G., Malinverno, A. and Cook, A., 2008. Velocity analysis of LWD
  31. and wireline sonic data in hydrate-bearing sediments on the Cascadia Margin.
  32. Proc. 6th Internat. Conf. Gas Hydrates, Vancouver, BC, Canada.
  33. Guerin, G. and Goldberg, D., 2002. Sonic waveform attenuation in gas hydrate-bearing
  34. sediments from the Mallik 21-38 research well, MacKenzie delta, Canada. J.
  35. Geophys. Res., Solid Earth, 107: EPM 1-1-EPM 1-11.
  36. Guerin, G. and Goldberg, D., 2005. Modeling of acoustic wave dissipation in gas
  37. hydrate-bearing sediments. Geochem., Geophys., Geosyst., 6: Q07010.
  38. Khadhraoui, B., 2011. Use of differential geometry properties for multichannel first break
  39. picking. Extended Abstr., 73rd EAGE Conf., Vienna.
  40. Mallinson, I., Bharadwaj, P., Schuster, G. and Jakubowicz, H., 2011. Enhanced
  41. refractor imaging by supervirtual interferometry. The Leading Edge, 30: 546-550.
  42. Milani, M., Rubino, J.G., Baron, L., Sidler, R. and Holliger, K., 2015. Attenuation of
  43. sonic waves in water-saturated alluvial sediments due to wave-induced fluid flow
  44. at microscopic, mesoscopic and macroscopic scales. Geophys. J. Internat., 203:
  45. 146-157.
  46. Nakata, N., Snieder, R., Tsuji, T., Larner, K. and Matsuoka, T., 2011. Shear wave
  47. imaging from traffic noise using seismic interferometry by cross-coherence.
  48. Geophysics, 76(6): SA97-SA 106.
  49. Ruigrok, E., Campman, X., Draganov, D. and Wapenaar, K., 2010. High-resolution
  50. lithospheric imaging with seismic interferometry. Geophys. J. Internat., 183: 339-
  51. Schuster, G.T., Yu, J., Sheng, J. and Rickett, J., 2004, Interferometric/daylight seismic
  52. imaging. Geophys. J. Internat., 157: 838-852.
  53. Schuster, G.T., 2009. Seismic Interferometry. Cambridge University Press, Cambridge.
  54. Snieder, R., 2004. Extracting the Green's function from the correlation of coda waves: a
  55. derivation based on stationary phase. Phys. Rev. E, 69: 046610, 1-8.
  56. Snieder, R., Sheiman, J. and Calvert, R., 2006. Equivalence of the virtual-source method
  57. and wave-field deconvolution in seismic interferometry. Phys. Rev. E, 73(6):
  58. Snieder, R., van Wijk, K., Haney, M. and Calvert, R., 2008. Cancellation of spurious
  59. arrivals in Green’s function extraction and the generalized optical theorem.
  60. Phys. Rev. E, 78(3): 036606.
  61. Taner, M.T. and Koehler, F., 1969. Velocity spectra - digital computer derivation and
  62. application of velocity functions. Geophysics, 34: 859-881.
  63. Vasconcelos, I. and Snieder, R., 2008. Interferometry by deconvolution: Part 1: Theory
  64. for acoustic waves and numerical examples. Geophysics, 73(3): S115-S128.
  65. Wapenaar, K. and Fokkema, J., 2006. Green's function representations for seismic
  66. interferometry. Geophysics, 71(4): SI33-SI46.
  67. Wapenaar, K., Draganov, D., Snieder, R., Campman, X. and Verdel, A., 2010. Tutorial
  68. on seismic interferometry, Part 1: Basic principles and applications. Geophysics,
  69. 75(5): A195-A209.
  70. Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker, J., Slob, E.,
  71. Thorbecke, J. and Snieder, R., 2011. Seismic interferometry by cross-correlation
  72. and by multidimensional deconvolution: a systematic comparison. Geophys. J.
  73. Internat., 185: 1335-1364.
  74. Yu, J. and Schuster, G.T., 2004. Enhancing illumination coverage of VSP data by
  75. crosscorrelogram migration. Expanded Abstr., 74th Ann. Internat. SEG Mtg.,
  76. Denver: 2501-2504.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing