Least-squares reverse time migration of pure qP-wave in anisotropic media using low-rank finite-difference

The pseudo-acoustic least-squares reverse time migration (PA-LSRTM) is often used for imaging of anisotropic media. Due to acoustic approximation, it, however, shows severe instability in the forward simulation, strong quasi-SV (qSV) wave residual in the demigration record, and terrible numerical dispersion in tilted transversely isotropic (TTI) media. The low-rank finite-difference (LFD) approach can effectively overcome these problems, but existing research only focuses on forward modeling, and no examples are found in LSRTM. For the first time in this paper, we derive the pure qP- wave linearized forward modeling and migration operators in TTI media with the help of LFD. Then, we implement pure qP-wave least-squares reverse time migration (LFD- LSRTM) in the inversion scheme. To improve the inversion efficiency, the plane-wave encoding technique is used, and to increase its robustness, the prestack parameterization is adopted. Finally, we obtain the prestack plane-wave least-squares reverse time migration (LFD-Pre-PLSRTM). Examples demonstrate that our method provides significant advantages in imaging TTI media, yielding satisfactory results with less expensive computation and more stable convergence compared to PA-LSRTM. More importantly, the proposed method can successfully avoid troubles caused by the acoustic approximation, and reasonably allow errors in the parameter model and noise in the data, making it possible to deal with real data.
- Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropic
- media. Geophysics, 63: 623-631.
- Chen, K. and Sacchi, M.D., 2017. Elastic least-squares reverse time migration via
- linearized elastic full-waveform inversion with pseudo-Hessian preconditioning.
- Geophysics, 82(5): $341-S358.
- Chu, C., Macy, B.K. and Anno, P.D., 2013. Pure acoustic wave propagation in
- transversely isotropic media by the pseudospectral method. Geophys. Prosp., 61:
- 556-567.
- Dai, W. and Schuster, G.T., 2013. Plane-wave least-squares reverse-time migration.
- Geophysics, 78(4): S165-S177.
- Dai, W. and Schuster, J., 2009. Least-squares migration of simultaneous sources data
- with a deblurring filter. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston:
- 2990-2994.
- Dai, W., Fowler, P. and Schuster, G.T., 2012. Multi-source least-squares reverse time
- migration. Geophys. Prosp., 60: 681-695.
- Dai, W., Wang, X. and Schuster, G.T., 2011. Least-squares migration of multisource
- data with a deblurring filter. Geophysics, 76(5): R135-R146.
- Dong, S., Cai, J., Guo, M., Suh, S., Zhang, Z., Wang, B. and Li, E.Z., 2012. Least-
- squares reverse time migration: Towards true amplitude imaging and improving
- the resolution. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
- Duan, Y., Guitton, A. and Sava, P., 2017. Elastic least-squares reverse time migration.
- Geophysics, 82(4): $315-S325.
- Dutta, G. and Schuster, G.T., 2014. Attenuation compensation for least-squares reverse
- time migration using the viscoacoustic-wave equation. Geophysics, 79(6): S251-
- Fang, G., Fomel, S., Du, Q. and Hu, J., 2014. Lowrank seismic-wave extrapolation on a
- staggered grid. Geophysics, 79(3): T157-T168.
- Feng, Z. and Schuster, G.T., 2017. Elastic least-squares reverse time migration.
- Geophysics, 82(2): $143-S157.
- Fomel, S., Ying, L. and Song, X., 2010. Seismic wave extrapolation using lowrank
- symbol approximation. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver:
- 3092-3096.
- Fomel, S., Ying, L. and Song, X., 2013. Seismic wave extrapolation using lowrank
- symbol approximation. Geophys. Prosp., 61: 526-536.
- Gu, B., Li, Z., Yang, P., Xu, W. and Han, J., 2017. Elastic least-squares reverse-time
- migration with hybrid 11/12 misfit function. Geophysics, 82(3): S271-S291.
- Guo, P. and McMechan, G.A., 2018. Compensating Q effects in viscoelastic media by
- adjoint-based least-squares reverse time migration. Geophysics, 83(2): S151-
- $172.
- Hou, J. and Symes, W.W., 2016. Accelerating extended least-squares migration with
- weighted conjugate gradient iteration. Geophysics, 81(4): $165-S179.
- Huang, J., Li, C. and Li, Z., 2017. Plane-wave least-squares reverse time migration in
- anisotropic media using low-rank finite difference. Extended Abstr., 79th EAGE
- Conf., Paris..
- Huang, J., Si, D., Li, Z. and Huang, J., 2016. Plane-wave least-squares reverse time
- migration in complex VTI media. Expanded Abstr., 86th Ann. Internat. SEG
- Mtg., Dallas: 441-446.
- Liu, Y., Symes, W.W. and Li, Z., 2013. Multisource least-squares extended reverse time
- migration with preconditioning guided gradient method. Expanded Abstr., 83rd
- Ann. Internat. SEG Mtg., Houston: 3709-3715.
- Nocedal, J., 1980. Updating quasi-Newton matrices with limited storage. Mathem.
- Computat., 35(151): 773-782.
- Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a
- functional with geophysical applications. Geophys. J. Internat., 167: 495-503.
- Qu, Y., Huang, J., Li, Z., Guan, Z. and Li, J., 2017. Attenuation compensation in
- anisotropic least-squares reverse time migration. Geophysics, 82(6): $411-S423.
- Song G., Huang R., Tian J., Chen Y., Chen P., and Yang Y., 2016. A new QP-wave
- equation for 2D VTI media. Expanded Abstr., 86th Ann. Internat. SEG Mtg.,
- Dallas: 3977-3981.
- Song, X. and Alkhalifah, T., 2013. Modeling of pseudoacoustic P-waves in orthorhombic
- media with a low-rank approximation. Geophysics, 78(4): C33-C40.
- Song, X., Fomel, S. and Ying, L., 2013. Lowrank finite-differences and lowrank Fourier
- finite-differences for seismic wave extrapolation in the acoustic approximation.
- Geophys. J. Internat., 193: 960-969.
- Sun, J., Fomel, S., Zhu, T. and Hu, J., 2016. Q-compensated least-squares reverse time
- migration using low-rank one-step wave extrapolation. Geophysics, 81(4): $271-
- $279.
- Tang, Y., 2009. Target-oriented wave-equation least-squares migration/inversion with
- phase-encoded Hessian. Geophysics, 74(6): WCA95-WCA107.
- Tarantola, A., 1984. Linearized inversion of seismic reflection data. Geophys. Prosp.,
- 32: 998-1015.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Wong, M., Biondi, B. and Ronen, S., 2010. Joint least-squares inversion of up-and
- down-going signal for ocean bottom data sets. Expanded Abstr., 80th Ann.
- Internat. SEG Mtg., Denver: 2752-2756.
- Wong, M., Biondi, B.L. and Rone, S., 2015. Imaging with primaries and free-surface
- multiples by joint least-squares reverse time migration. Geophysics, 80(6): $223-
- Wong, M., Ronen, S. and Biondi, B., 2011. Least-squares reverse time
- migration/inversion for ocean bottom data: A case study. Expanded Abstr., 81st
- Ann. Internat. SEG Mtg., San Antonio: 2369-2373.
- Xu, S. and Zhou, H., 2014. Accurate simulations of pure quasi-P-waves in complex
- anisotropic media. Geophysics, 79(6): T341-T348.
- Yang, J., Zhu, H., McMechan, G., Zhang, H. and Zhao, Y., 2019. Elastic least-squares
- reverse-time migration in vertical transverse isotropic media. Geophysics, 84(6):
- $539-S553.
- Zhan, G., Pestana, R.C. and Stoffa, P.L., 2012. Decoupled equations for reverse time
- migration in tilted transversely isotropic media. Geophysics, 77(2): T37-T45.
- Zhan, G., Pestana, R.C. and Stoffa, P.L., 2013. An efficient hybrid pseudospectral/finite-
- difference scheme for solving the TTI pure P-wave equation. J. Geophys.
- Engineer., 10(2): 025004.
- Zhang, Y., Duan, L. and Xie, Y., 2015. A stable and practical implementation of least-
- squares reverse-time migration. Geophysics, 80(1): V23-V31.
- Zhang, Y., Zhang, H. and Zhang, G., 2011. A stable TTI reverse time migration and its
- implementation. Geophysics, 76(3): WA3-WA11.