ARTICLE

Least-squares reverse time migration of pure qP-wave in anisotropic media using low-rank finite-difference

GUOCHAO GAO1 JINQIANG HUANG2* ZHENCHUN LI3
Show Less
1 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille 13397, France.,
2 Resource and Environmental Engineering College,Guizhou University, Guiyang 550025, China.,
3 School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
JSE 2021, 30(2), 121–146;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The pseudo-acoustic least-squares reverse time migration (PA-LSRTM) is often used for imaging of anisotropic media. Due to acoustic approximation, it, however, shows severe instability in the forward simulation, strong quasi-SV (qSV) wave residual in the demigration record, and terrible numerical dispersion in tilted transversely isotropic (TTI) media. The low-rank finite-difference (LFD) approach can effectively overcome these problems, but existing research only focuses on forward modeling, and no examples are found in LSRTM. For the first time in this paper, we derive the pure qP- wave linearized forward modeling and migration operators in TTI media with the help of LFD. Then, we implement pure qP-wave least-squares reverse time migration (LFD- LSRTM) in the inversion scheme. To improve the inversion efficiency, the plane-wave encoding technique is used, and to increase its robustness, the prestack parameterization is adopted. Finally, we obtain the prestack plane-wave least-squares reverse time migration (LFD-Pre-PLSRTM). Examples demonstrate that our method provides significant advantages in imaging TTI media, yielding satisfactory results with less expensive computation and more stable convergence compared to PA-LSRTM. More importantly, the proposed method can successfully avoid troubles caused by the acoustic approximation, and reasonably allow errors in the parameter model and noise in the data, making it possible to deal with real data.

Keywords
anisotropy
least-squares migration
pure qP-wave
low-rank finite difference
inversion
References
  1. Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropic
  2. media. Geophysics, 63: 623-631.
  3. Chen, K. and Sacchi, M.D., 2017. Elastic least-squares reverse time migration via
  4. linearized elastic full-waveform inversion with pseudo-Hessian preconditioning.
  5. Geophysics, 82(5): $341-S358.
  6. Chu, C., Macy, B.K. and Anno, P.D., 2013. Pure acoustic wave propagation in
  7. transversely isotropic media by the pseudospectral method. Geophys. Prosp., 61:
  8. 556-567.
  9. Dai, W. and Schuster, G.T., 2013. Plane-wave least-squares reverse-time migration.
  10. Geophysics, 78(4): S165-S177.
  11. Dai, W. and Schuster, J., 2009. Least-squares migration of simultaneous sources data
  12. with a deblurring filter. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston:
  13. 2990-2994.
  14. Dai, W., Fowler, P. and Schuster, G.T., 2012. Multi-source least-squares reverse time
  15. migration. Geophys. Prosp., 60: 681-695.
  16. Dai, W., Wang, X. and Schuster, G.T., 2011. Least-squares migration of multisource
  17. data with a deblurring filter. Geophysics, 76(5): R135-R146.
  18. Dong, S., Cai, J., Guo, M., Suh, S., Zhang, Z., Wang, B. and Li, E.Z., 2012. Least-
  19. squares reverse time migration: Towards true amplitude imaging and improving
  20. the resolution. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  21. Duan, Y., Guitton, A. and Sava, P., 2017. Elastic least-squares reverse time migration.
  22. Geophysics, 82(4): $315-S325.
  23. Dutta, G. and Schuster, G.T., 2014. Attenuation compensation for least-squares reverse
  24. time migration using the viscoacoustic-wave equation. Geophysics, 79(6): S251-
  25. Fang, G., Fomel, S., Du, Q. and Hu, J., 2014. Lowrank seismic-wave extrapolation on a
  26. staggered grid. Geophysics, 79(3): T157-T168.
  27. Feng, Z. and Schuster, G.T., 2017. Elastic least-squares reverse time migration.
  28. Geophysics, 82(2): $143-S157.
  29. Fomel, S., Ying, L. and Song, X., 2010. Seismic wave extrapolation using lowrank
  30. symbol approximation. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver:
  31. 3092-3096.
  32. Fomel, S., Ying, L. and Song, X., 2013. Seismic wave extrapolation using lowrank
  33. symbol approximation. Geophys. Prosp., 61: 526-536.
  34. Gu, B., Li, Z., Yang, P., Xu, W. and Han, J., 2017. Elastic least-squares reverse-time
  35. migration with hybrid 11/12 misfit function. Geophysics, 82(3): S271-S291.
  36. Guo, P. and McMechan, G.A., 2018. Compensating Q effects in viscoelastic media by
  37. adjoint-based least-squares reverse time migration. Geophysics, 83(2): S151-
  38. $172.
  39. Hou, J. and Symes, W.W., 2016. Accelerating extended least-squares migration with
  40. weighted conjugate gradient iteration. Geophysics, 81(4): $165-S179.
  41. Huang, J., Li, C. and Li, Z., 2017. Plane-wave least-squares reverse time migration in
  42. anisotropic media using low-rank finite difference. Extended Abstr., 79th EAGE
  43. Conf., Paris..
  44. Huang, J., Si, D., Li, Z. and Huang, J., 2016. Plane-wave least-squares reverse time
  45. migration in complex VTI media. Expanded Abstr., 86th Ann. Internat. SEG
  46. Mtg., Dallas: 441-446.
  47. Liu, Y., Symes, W.W. and Li, Z., 2013. Multisource least-squares extended reverse time
  48. migration with preconditioning guided gradient method. Expanded Abstr., 83rd
  49. Ann. Internat. SEG Mtg., Houston: 3709-3715.
  50. Nocedal, J., 1980. Updating quasi-Newton matrices with limited storage. Mathem.
  51. Computat., 35(151): 773-782.
  52. Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a
  53. functional with geophysical applications. Geophys. J. Internat., 167: 495-503.
  54. Qu, Y., Huang, J., Li, Z., Guan, Z. and Li, J., 2017. Attenuation compensation in
  55. anisotropic least-squares reverse time migration. Geophysics, 82(6): $411-S423.
  56. Song G., Huang R., Tian J., Chen Y., Chen P., and Yang Y., 2016. A new QP-wave
  57. equation for 2D VTI media. Expanded Abstr., 86th Ann. Internat. SEG Mtg.,
  58. Dallas: 3977-3981.
  59. Song, X. and Alkhalifah, T., 2013. Modeling of pseudoacoustic P-waves in orthorhombic
  60. media with a low-rank approximation. Geophysics, 78(4): C33-C40.
  61. Song, X., Fomel, S. and Ying, L., 2013. Lowrank finite-differences and lowrank Fourier
  62. finite-differences for seismic wave extrapolation in the acoustic approximation.
  63. Geophys. J. Internat., 193: 960-969.
  64. Sun, J., Fomel, S., Zhu, T. and Hu, J., 2016. Q-compensated least-squares reverse time
  65. migration using low-rank one-step wave extrapolation. Geophysics, 81(4): $271-
  66. $279.
  67. Tang, Y., 2009. Target-oriented wave-equation least-squares migration/inversion with
  68. phase-encoded Hessian. Geophysics, 74(6): WCA95-WCA107.
  69. Tarantola, A., 1984. Linearized inversion of seismic reflection data. Geophys. Prosp.,
  70. 32: 998-1015.
  71. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  72. Wong, M., Biondi, B. and Ronen, S., 2010. Joint least-squares inversion of up-and
  73. down-going signal for ocean bottom data sets. Expanded Abstr., 80th Ann.
  74. Internat. SEG Mtg., Denver: 2752-2756.
  75. Wong, M., Biondi, B.L. and Rone, S., 2015. Imaging with primaries and free-surface
  76. multiples by joint least-squares reverse time migration. Geophysics, 80(6): $223-
  77. Wong, M., Ronen, S. and Biondi, B., 2011. Least-squares reverse time
  78. migration/inversion for ocean bottom data: A case study. Expanded Abstr., 81st
  79. Ann. Internat. SEG Mtg., San Antonio: 2369-2373.
  80. Xu, S. and Zhou, H., 2014. Accurate simulations of pure quasi-P-waves in complex
  81. anisotropic media. Geophysics, 79(6): T341-T348.
  82. Yang, J., Zhu, H., McMechan, G., Zhang, H. and Zhao, Y., 2019. Elastic least-squares
  83. reverse-time migration in vertical transverse isotropic media. Geophysics, 84(6):
  84. $539-S553.
  85. Zhan, G., Pestana, R.C. and Stoffa, P.L., 2012. Decoupled equations for reverse time
  86. migration in tilted transversely isotropic media. Geophysics, 77(2): T37-T45.
  87. Zhan, G., Pestana, R.C. and Stoffa, P.L., 2013. An efficient hybrid pseudospectral/finite-
  88. difference scheme for solving the TTI pure P-wave equation. J. Geophys.
  89. Engineer., 10(2): 025004.
  90. Zhang, Y., Duan, L. and Xie, Y., 2015. A stable and practical implementation of least-
  91. squares reverse-time migration. Geophysics, 80(1): V23-V31.
  92. Zhang, Y., Zhang, H. and Zhang, G., 2011. A stable TTI reverse time migration and its
  93. implementation. Geophysics, 76(3): WA3-WA11.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing