AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025260030
ARTICLE

Seismic signal denoising using variational mode decomposition and a denoising convolutional neural network

Shengrong Zhang1,2 Liang Zhang1* Xuesha Qin3
Show Less
1 The Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang, Guizhou, China
2 School of Computer and Electronics Information, Guangxi University, Nanning, Guangxi, China
3 China-ASEAN School of Economics, Guangxi University, Nanning, Guangxi, China
Submitted: 29 June 2025 | Revised: 12 August 2025 | Accepted: 13 August 2025 | Published: 4 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Effectively recovering signals buried in noise remains a challenging topic in seismic data denoising. Many conventional methods often fail to accurately capture the characteristics of seismic signals. To address this issue, this study proposed an effective method called variational mode decomposition (VMD)–denoising convolutional neural network (DnCNN). The method first applies VMD to decompose the originally noisy signal into multiple intrinsic mode functions (IMFs) with band-pass characteristics, thereby achieving effective decoupling of different frequency components and noise separation. Selected IMFs are then combined into a multi-channel input and fed into the DnCNN for end-to-end modeling and denoising reconstruction. By decomposing the noisy signal into IMFs corresponding to specific frequency bands and learning them through DnCNN, the network can better extract features within each frequency band. Serving as a front-end filter, the VMD module enhances the network’s ability to represent effective frequency components, suppresses high-frequency random noise, and improves the resolution of weak signals. Experimental results demonstrated that the proposed method effectively captures signal characteristics and recovers signals from both real and synthetic seismic data. In conclusion, the proposed VMD–DnCNN method provides a robust and efficient solution for seismic signal denoising.

Keywords
Variational mode decomposition
Denoising convolutional neural network
Intrinsic mode functions
Recover weak signals
Seismic denoising
Funding
This work was supported in part by the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project (grant no.: 2024ZD1002202), in part by the Guizhou Provincial Basic Research Program (Natural Science) (grant no.: QianKeHeJiChu-K[2024] YiBan013), in part by the Guizhou University Basic Research Project (grant no.: GuiDaJiChu[2023]44), and in part by the Guizhou University Talent Introduction Research Project (grant no.: GuiDaRenJiHeZi[2023]10).
Conflict of interest
The authors have approved the submission and declare no conflicts of interest.
References
  1. Zhong T, Li F, Zhang R, Dong X, Lu S. Multiscale residual pyramid network for seismic background noise attenuation. IEEE Trans Geosci Remote Sens. 2022;60:1-14. doi: 10.1109/tgrs.2022.3217887

 

  1. Dong X, Lin J, Lu S, Wang H, Li Y. Multiscale spatial attention network for seismic data denoising. IEEE Trans Geosci Remote Sens. 2022;60:1-17. doi: 10.1109/tgrs.2022.3178212

 

  1. Cooper HW, Cook RE. Seismic data gathering. Proc IEEE. 1984;72:1266-1275. doi: 10.1109/PROC.1984.13016

 

  1. Spikes KT, Tisato N, Hess TE, Holt JW. Comparison of geophone and surface-deployed distributed acoustic sensing seismic data. Geophysics. 2019;84:A25-A29. doi: 10.1190/geo2018-0528.1

 

  1. Wang X, Ma J, Dong X, Cheng M. HCVT-Net: A hybrid CNN-transformer network for self-supervised 3D seismic data interpolation. J Appl Geophys. 2025;242:105873. doi: 10.1016/j.jappgeo.2025.105873

 

  1. Dong X, Cheng M, Wang H, Li G, Lin J, Lu S. A potential solution to insufficient target-domain noise data: Transfer learning and noise modeling. IEEE Trans Geosci Remote Sens. 2023;61:1-15. doi: 10.1109/tgrs.2023.3300697

 

  1. Anvari R, Siahsar MAN, Gholtashi S, Kahoo AR, Mohammadi M. Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens. 2017;55:6574-6581. doi: 10.1109/tgrs.2017.2730228

 

  1. Mousavi SM, Langston CA. Automatic noise-removal/ signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data. Geophysics. 2017;82:V211-V227. doi: 10.1190/geo2016-0433.1

 

  1. Liu N, Gao J, Zhang B, Wang Q, Jiang X. Self-adaptive generalized S-transform and its application in seismic time-frequency analysis. IEEE Trans Geosci Remote Sens. 2019;57:7849-7859. doi: 10.1109/tgrs.2019.2916792

 

  1. Neelamani R, Baumstein AI, Gillard DG, Hadidi MT, Soroka WL. Coherent and random noise attenuation using the curvelet transform. Leading Edge. 2008;27:240-248. doi: 10.1190/1.2840373

 

  1. Starck JL, Candès EJ, Donoho DL. The curvelet transform for image denoising. IEEE Trans Image Process. 2002;11:670-684. doi: 10.1109/tip.2002.1014998

 

  1. Do MN, Vetterli M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans Image Process. 2005;14:2091-2106. doi: 10.1109/tip.2005.859376

 

  1. Yu S, Ma J. Complex variational mode decomposition for slope-preserving denoising. IEEE Trans Geosci Remote Sens. 2017;56:586-597. doi: 10.1109/tgrs.2017.2751642

 

  1. Bekara M, Van der Baan M. Random and coherent noise attenuation by empirical mode decomposition. Geophysics. 2009;74:V89-V98. doi: 10.1190/1.3157244

 

  1. Liu N, Li F, Wang D, Gao J, Xu Z. Ground-roll separation and attenuation using curvelet-based multichannel variational mode decomposition. IEEE Trans Geosci Remote Sens. 2021;60:1-14. doi: 10.1109/tgrs.2021.3054749

 

  1. Bekara M, Van der Baan M. Local singular value decomposition for signal enhancement of seismic data. Geophysics. 2007;72:V59-V65. doi: 10.1190/1.2435967

 

  1. Dong X, Zhong T, Li Y. New suppression technology for low-frequency noise in desert region: The improved robust principal component analysis based on prediction of neural network. IEEE Trans Geosci Remote Sens. 2020;58:4680-4690. doi: 10.1109/tgrs.2020.2966054

 

  1. Trickett S. F-xy cadzow noise suppression. In: SEG Technical Program Expanded Abstracts. United States: Society of Exploration Geophysicists; 2008. p. 2586-2590. doi: 10.1190/1.3063880

 

  1. Goodfellow I, Bengio Y, Courville A. Deep Learning. Vol 1. Cambridge: MIT Press; 2016.

 

  1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. doi: 10.1038/nature14539

 

  1. Yu S, Ma J, Wang W. Deep learning for denoising. Geophysics. 2019;84:V333-V350. doi: 10.1190/geo2018-0668.1

 

  1. Wang X, Ma J, Dong X, Zhong T, Dong S. EFGW-UNet: A deep-learning-based approach for weak signal recovery in seismic data. IEEE Trans Geosci Remote Sens. 2024;62:1-3. doi: 10.1109/tgrs.2024.3398590

 

  1. Zhu W, Mousavi SM, Beroza GC. Seismic signal denoising and decomposition using deep neural networks. IEEE Trans Geosci Remote Sens. 2019;57:9476-9488. doi: 10.1109/TGRS.2019.2926772

 

  1. Zhang L, Li G, Chen H, et al. Identification and suppression of multicomponent noise in audio magnetotelluric data based on convolutional block attention module. IEEE Trans Geosci Remote Sens. 2024;62:5905515.doi: 10.1109/tgrs.2024.3361942

 

  1. Wei X, Zhang C, Jiang B, et al. Efficient Seismic Data Interpolation Via Sparse Attention Transformer and Diffusion Model. [arXiv Preprint]; 2025. doi: 10.48550/arxiv.2506.07923

 

  1. Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26:3142-3155. doi: 10.1109/TIP.2017.2662206

 

  1. Yu S, Ma J, Osher S. Monte Carlo data-driven tight frame for seismic data recovery. Geophysics. 2016;81:V327-V340. doi: 10.1190/geo2015-0343.1

 

  1. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. [arXiv preprint]; 2014. doi: 10.48550/arXiv.1412.6980

 

  1. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III. Vol 18. Springer; 2015. p. 234-241. doi: 10.1007/978-3-319-24574-4_28
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing