AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025400083
ARTICLE

Subsurface imaging based on polarization analysis of microtremor Rayleigh waves

Qingling Du1,2* Qian Xu1 Nan Guo3 Shuai Liu1 Shijie Liu4 Denghui Gao1
Show Less
1 College of Civil Engineering and Architecture, Huanghuai University, Zhumadian, Henan, China
2 Henan International Joint Laboratory of Structural Mechanics and Computational Simulation, Huanghuai University, Zhumadian, Henan, China
3 School of Civil and Hydraulic Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
4 Department of Architecture and Civil Engineering, Lvliang University, Lvliang, Shanxi, China
Submitted: 3 October 2025 | Revised: 25 November 2025 | Accepted: 25 November 2025 | Published: 23 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The precise identification of adverse geological bodies, such as goafs, karst cavities, and faults, is crucial for engineering safety and economic viability. However, conventional drilling methods suffer from high costs, limited coverage, and the risk of overlooking anomalies. While existing geophysical techniques can address drilling’s limitations, they are often constrained by non-uniqueness and insufficient resolution. To address these challenges, this paper proposes a novel technique for stratigraphic evaluation based on the polarization analysis of microtremor surface waves, aiming to improve the accuracy and efficiency of identifying dynamic site parameters in complex geological settings. We systematically validated the feasibility of using the elliptical polarization ratio of Rayleigh waves for subsurface characterization through theoretical analysis and field data. Numerical simulations confirmed that the method can clearly identify localized geological anomalies under noise-free conditions. For field data processing, we developed a workflow to extract Rayleigh waves with a high signal-to-noise ratio from microtremors. This workflow isolates valid wave components using principal frequency filtering and directional discrimination, while mitigating noise impact on dispersion estimation. The final polarization ratio profile strongly correlated with magnetotelluric resistivity data, successfully imaging goafs, fractured zones, and bedrock interfaces. Stacking codirectional wave events further enhanced deep structural resolution and resulted in consistency. In conclusion, this study demonstrates that the polarization-based method is a feasible, flexible, and promising tool for engineering applications, offering a reliable foundation for fine-scale site characterization.

Keywords
Microtremor Rayleigh wave
Elliptical polarization ratio
Site characterization
Numerical simulations
Funding
This research was financially supported by the Henan Province Science and Technology Research Project (Grant No. 252102320002 and 242102231058), the National Natural Science Foundation of China (Grant No. 42462028), Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2023JD52), the Science and Technology Program of Gansu Province (Grant No. 24CXGE011), and the Science and Technology Program Funding of Tianshui Qinzhou District (Grant No. 2024-SHFZG-9168).
Conflict of interest
The authors declare they have no competing interests.
References
[1]
  1. Soupios PM, Georgakopoulos P, Papadopoulos N, et al. Use of engineering geophysics to investigate a site for a building foundation. J Geophys Eng. 2007;4(1):94-103. doi: 10.1088/1742-2132/4/1/011

 

  1. Rodgers MB, McVay MC, Horhota DJ, Hernando J, Paris JM. Operational limits of measuring while drilling in Florida limestone for geotechnical site characterization. J Geotech Geoenviron Eng. 2021;147(12):04021154. doi: 10.1061/(asce)gt.1943-5606.0002688

 

  1. Wei X, Liu Y, Li X, Lu Y. Application of high density resistivity method in karst exploration: A case study. Tehnički Vjesnik. 2023;30(4):1283-1291. doi: 10.17559/tv-20230205000322

 

  1. Lei X, Zhang J, Jin W, Han C, Xu X. The application of ambient noise and reflection seismic exploration in an Urban active fault survey. Interpretation. 2020;8(4):SU1-SU10. doi: 10.1190/int-2020-0085.1

 

  1. Kachaje O, Yan L, Zhang Z. A Bayesian inference approach to reduce uncertainty in magnetotelluric inversion: A synthetic case study. J Geosci Environ Prot. 2019;7(2):62-75. doi: 10.4236/gep.2019.72005

 

  1. Xia J, Miller RD, Park CB, Hunter JA, Harris JB, Ivanov J. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn Earthq Eng. 2002;22(3):181-190. doi: 10.1016/s0267-7261(02)00008-8

 

  1. Park CB, Miller RD, Xia JH. Multichannel analysis of surface waves. Geophysics. 1999;64(3):800-808. doi: 10.1190/1.1444590

 

  1. Xia JH, Miller RD, Park CB. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics. 1999;64(3):691-700. doi: 10.1190/1.1444578

 

  1. Yu C, Wang Z, Tang M. Application of microtremor survey technology in a coal mine goaf. Appl Sci. 2023;13:466. doi: 10.3390/app13010466

 

  1. Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst. 1957;35:415-456.

 

  1. Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE. 1969;57:1408-1418. doi: 10.1109/proc.1969.7278

 

  1. Asten MW, Henstridge JD. Arrays estimators and use of microseisms for reconnaissance of sediementary basins. Geophysics. 1984;48:1828-1837. doi: 10.1190/1.1441596

 

  1. Horike M. Inversion of Phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized area. J Phys Earth. 1985;33:59-96. doi: 10.4294/jpe1952.33.59

 

  1. Pan YD, Gao LL, Shigapov R. Multi-objective waveform inversion of shallow seismic wavefields. Geophys J Int. 2020;220:1619-1631. doi: 10.1093/gji/ggz539

 

  1. Qingling D, Jianjun F, Yan Y, Kuanyao Z, Qian H. Application of near surface engineering defect exploration technology based on spatial autocorrelation. Episodes J Int Geosci. 2025;48(2):145-153. doi: 10.18814/epiiugs/2024/024022

 

  1. Nogoshi M, Igarashi T. On the amplitude characteristics of microtremor (part 2). Zisin J Seismol Soc Japan 2nd ser. 1971;24:26-40. doi: 10.4294/zisin1948.24.1_26

 

  1. Arai H, Tokimatsu K. S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am. 2005;95(5):1766-1778. doi: 10.1785/0120040243

 

  1. Woodhouse JH. Surface waves in a laterally varying layered structure. Geophys J Int. 1974;37(3):461-490.doi: 10.1111/j.1365-246X.1974.tb04098.x

 

  1. Haney MM, Mikesell TD, Wijk KV, Nakahara H. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves. Geophys J Int. 2012;91(1):189-206. doi: 10.1111/j.1365-246x.2012.05597.x

 

  1. Maupin V. 3-D sensitivity kernels of the Rayleigh wave ellipticity. Geophys J Int. 2017;211(1):107-119. doi: 10.1093/gji/ggx294

 

  1. Berbellini A, Schimmel M. Ferreira AM, Morelli A. Constraining S-wave velocity using Rayleigh wave ellipticity from polarization analysis of seismic noise. Geophys J Int. 2019;216(3):1817-1830. doi: 10.1093/gji/ggy512

 

  1. Tokimatsu K, Miyadera Y. Characteristics of Rayleigh waves in microtremors and their relation to underground structures. J Struct Constr Eng. 1992;30:439.

 

  1. Fäh D, Kind F, Giardini D. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J Seismol. 2003;7(4):449-467. doi: 10.1023/b: jose.0000005712.86058.42

 

  1. Yu W, Liu Z. A numerical study of the Rayleigh wave particle motions excited by a point source and Poisson’s ratio for lateral inhomogeneous half-spaces. J Appl Geophys. 2015;123:242-255.

 

  1. Tran TT, Vinh PC, Ohrnberger M, Malischewsky P, Aoudia A. An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique. Pure Appl Geophys. 2016;173:2803-2812. doi: 10.1007/s00024-016-1313-0

 

  1. Bignardi S. The uncertainty of estimating the thickness of soft sediments with the HVSR method: A computational point of view on weak lateral variations. J Appl Geophys. 2017;145:28-38. doi: 10.1016/j.jappgeo.2017.07.017

 

  1. Picotti S, Francese R, Giorgi M, Pettenati F, Carcione JM. Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. J Glaciol. 2017;63(238):229-248. doi: 10.1017/jog.2016.135

 

  1. Abu Zeid N, Corradini E, Bignardi S, Nizzo V, Santarato G. The passive seismic technique “HVSR” as a reconnaissance tool for mapping paleo-soils: The case of the pilastri archaeological site, Northern Italy. Archaeol Prospect. 2017;24(3):245-258. doi: 10.1002/arp.1568

 

  1. Fäh D, Kind F, Giardini D. A theoretical investigation of average H/V ratios. Geophys J Int. 2001;145(2): 535-549. doi: 10.1046/j.0956-540x.2001.01406.x

 

  1. Xu H, Yin X, Qi Q, Mi B, Sun S, Luo Y. Determination of near-surface shear-velocity structure based on the joint inversion of Rayleigh-wave dispersion and ellipticity from multistation active-seismic records. Geophysics. 2022;87(3):21-32. doi: 10.1190/geo2021-0176.1

 

  1. Du Q, Pan Y, Yan Y. Research and application of Rayleigh wave extraction method based on microtremors signal analysis. Front Phys. 2023;11:1158049. doi: 10.3389/fphy.2023.1158049

 

  1. Poggi V, Fäh D, Burjanek J, Giardini D. The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: Application to the city of Lucerne, Switzerland. Geophys J Int. 2012;188(3):1154-1172. doi: 10.1111/j.1365-246x.2011.05305.x
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing