AccScience Publishing / JSE / Online First / DOI: 10.36922/JSE025360067
ARTICLE

Fault identification and enhancement using residual U-Net: Application to field seismic data

Jianhua Wang1* Cong Niu1 Yandong Wang1 Yun Ling1 Di Wang1 Xiuping Jiang2,3,4 Chenshuo Yuan2
Show Less
1 CNOOC Research Institute Co., Ltd., Beijing, China
2 College of Marine Geo-sciences, Ocean University of China, Qingdao, Shandong, China
3 Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
4 Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
JSE 2026, 35(1), 025360067 https://doi.org/10.36922/JSE025360067
Submitted: 3 September 2025 | Revised: 17 November 2025 | Accepted: 27 November 2025 | Published: 20 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Fault identification is a critical step in seismic data interpretation. Traditional fault identification methods rely heavily on manual interpretation, which is inefficient and significantly influenced by subjective factors. This paper proposes a fault identification algorithm based on a Residual U-Net–curvelet hybrid framework. By introducing residual learning strategies and applying batch normalization and skip connection techniques, the generalization ability and convergence speed of the network are enhanced, thereby improving the accuracy and efficiency of fault identification. Results from field data processing demonstrate that this method achieves high identification accuracy under complex geological structures and low signal-to-noise ratio conditions, providing reliable fault identification results for efficient seismic data interpretation.

Keywords
Fault identification and enhancement
Deep learning
Residual U-Net
Random noise suppression
Funding
This research is jointly funded by the National Natural Science Foundation of China (U23B20158) and the Major Science and Technology Project of China National Offshore Oil Corporation (CNOOC) during the “14th Five- Year Plan” (KJGG2022-0104).
Conflict of interest
The authors declare no conflict of interest.
References
[1]
  1. Marfurt KJ, Kirlin RL, Farmer SL, et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics. 1998;63(4):1150. doi: 10.1190/1.1444415

 

  1. Gersztenkorn A, Marfurt KJ. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics. 1999;64(5):1468-1479. doi: 10.1190/1.1444651

 

  1. Li X, Yang P, Yan H, et al. Identification of minor fault and its applications on the development of offshore oil fields. Comput Techn Geophys Geochem Explor. 2014;36(2):222-227.

 

  1. Roberts A. Curvature attributes and their application to 3D interpreted horizons. First Break. 2001;19(2):85-100. doi: 10.1046/j.0263-5046.2001.00142.x

 

  1. Al-Dossary S, Marfurt KJ. 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics. 2006;71(5):P41-P51. doi: 10.1190/1.2242449

 

  1. Hale D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics. 2013;78(2):O33-O43. doi: 10.1190/geo2012-0331.1

 

  1. Wu X, Hale D. 3D seismic image processing for faults. Geophysics. 2016;81(2):IM1-IM11.

 

  1. Pedersen SI, Randen, T, Sønneland L, et al. Automatic Fault Extraction using Artificial Ants. In: SEG Technical Program Expanded Abstracts 2002, SEG-2002-0512. Salt Lake City: SEG; 2002.

 

  1. Lavialle O, Pop S, Germain C, et al. Seismic fault preserving diffusion. J Appl Geophys. 2007;61(2):132-141. doi: 10.1016/j.jappgeo.2006.06.002

 

  1. Wu X, Fomel S. Automatic fault interpretation with optimal surface voting. Geophysics. 2018;83(5):O67-O82. doi: 10.1190/geo2018-0115.1

 

  1. Chen G, Liu Y. Research progress of automatic fault recognition based on artificial intelligence. Prog Geophys. 2021;36(1):119-131.

 

  1. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. IEEE. p. 770-778. doi: 10.1109/CVPR.2016.90

 

  1. Wu X, Shi Y, Fomel S, et al. Convolutional Neural Networks for Fault Interpretation in Seismic Images. In: 2018 SEG International Exposition and Annual Meeting. Anaheim: SEG, 2018.

 

  1. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2015. p. 3431-3440. doi: 10.1109/cvpr.2015.7298965

 

  1. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical image Segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer, 2015. p. 234-241. doi: 10.1007/978-3-319-24574-4_28.

 

  1. Wu X, Liang L, Shi Y, et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics. 2019;84(3):IM35-IM45. doi: 10.1190/geo2018-0646.1

 

  1. Zhao M, Zhao Y, Shen D, Wang J, Dai X. High-resolution processing of seismic data using adaptive attention mechanism U-net. Oil Geophys Prospect. 2024;59(4):675-683. doi: 10.13810/j.cnki.issn.1000-7210.2024.04.003

 

  1. He T, Liu NH, Wu BY, et al. ResU-net based three-dimensional fault identification method and application. Chin J Eng Math. 2023;40(1):1-19. doi: 10.3969/j.issn.1005-3085.2023.01.001
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing