Fault identification and enhancement using residual U-Net: Application to field seismic data
Fault identification is a critical step in seismic data interpretation. Traditional fault identification methods rely heavily on manual interpretation, which is inefficient and significantly influenced by subjective factors. This paper proposes a fault identification algorithm based on a Residual U-Net–curvelet hybrid framework. By introducing residual learning strategies and applying batch normalization and skip connection techniques, the generalization ability and convergence speed of the network are enhanced, thereby improving the accuracy and efficiency of fault identification. Results from field data processing demonstrate that this method achieves high identification accuracy under complex geological structures and low signal-to-noise ratio conditions, providing reliable fault identification results for efficient seismic data interpretation.
- Marfurt KJ, Kirlin RL, Farmer SL, et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics. 1998;63(4):1150. doi: 10.1190/1.1444415
- Gersztenkorn A, Marfurt KJ. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics. 1999;64(5):1468-1479. doi: 10.1190/1.1444651
- Li X, Yang P, Yan H, et al. Identification of minor fault and its applications on the development of offshore oil fields. Comput Techn Geophys Geochem Explor. 2014;36(2):222-227.
- Roberts A. Curvature attributes and their application to 3D interpreted horizons. First Break. 2001;19(2):85-100. doi: 10.1046/j.0263-5046.2001.00142.x
- Al-Dossary S, Marfurt KJ. 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics. 2006;71(5):P41-P51. doi: 10.1190/1.2242449
- Hale D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics. 2013;78(2):O33-O43. doi: 10.1190/geo2012-0331.1
- Wu X, Hale D. 3D seismic image processing for faults. Geophysics. 2016;81(2):IM1-IM11.
- Pedersen SI, Randen, T, Sønneland L, et al. Automatic Fault Extraction using Artificial Ants. In: SEG Technical Program Expanded Abstracts 2002, SEG-2002-0512. Salt Lake City: SEG; 2002.
- Lavialle O, Pop S, Germain C, et al. Seismic fault preserving diffusion. J Appl Geophys. 2007;61(2):132-141. doi: 10.1016/j.jappgeo.2006.06.002
- Wu X, Fomel S. Automatic fault interpretation with optimal surface voting. Geophysics. 2018;83(5):O67-O82. doi: 10.1190/geo2018-0115.1
- Chen G, Liu Y. Research progress of automatic fault recognition based on artificial intelligence. Prog Geophys. 2021;36(1):119-131.
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. IEEE. p. 770-778. doi: 10.1109/CVPR.2016.90
- Wu X, Shi Y, Fomel S, et al. Convolutional Neural Networks for Fault Interpretation in Seismic Images. In: 2018 SEG International Exposition and Annual Meeting. Anaheim: SEG, 2018.
- Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2015. p. 3431-3440. doi: 10.1109/cvpr.2015.7298965
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical image Segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer, 2015. p. 234-241. doi: 10.1007/978-3-319-24574-4_28.
- Wu X, Liang L, Shi Y, et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics. 2019;84(3):IM35-IM45. doi: 10.1190/geo2018-0646.1
- Zhao M, Zhao Y, Shen D, Wang J, Dai X. High-resolution processing of seismic data using adaptive attention mechanism U-net. Oil Geophys Prospect. 2024;59(4):675-683. doi: 10.13810/j.cnki.issn.1000-7210.2024.04.003
- He T, Liu NH, Wu BY, et al. ResU-net based three-dimensional fault identification method and application. Chin J Eng Math. 2023;40(1):1-19. doi: 10.3969/j.issn.1005-3085.2023.01.001
