ARTICLE

A multi-axial perfectly matched layer for finite-element time-domain simulation of anisotropic elastic wave propagation

HAIPENG LI1 JINGYI CHEN2* ZHENCONG ZHAO2 JUNLUN LI1
Show Less
1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.,
2 Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A.,
JSE 2021, 30(2), 173–200;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Li, H.P., Chen, J., Zhao, Z.C. and Li, J-L., 2021. A multi-axial perfectly matched layer for finite-element time-domain simulation of anisotropic elastic wave propagation. Journal of Seismic Exploration, 30: 173-200. In order to effectively suppress the spurious reflections from the truncated boundaries in seismic numerical modeling, various perfectly matched layer (PML) absorbing boundary conditions have been developed in the past decades. The multi-axial perfectly matched layer (M-PML) attenuates seismic waves in the PML domain depending on the wave propagation directions, which remains efficient even under the situation of grazing incidences. To take advantage of the finite-element method (FEM) in dealing with the complex subsurface structure and irregular topography, we develop a nonconvolutional split-field M-PML based on the second-order elastic wave formulation to simulate the finite-element time-domain seismic wave propagation in this paper. The proposed M-PML algorithm requires fewer splitting terms and less storage space compared to the second-order M-PML in the literature. Three numerical experiments are carried out to illustrate the stability and efficiency of the newly proposed M-PML when used in the finite-element anisotropic elastic wavefield simulation with an irregular topography.

Keywords
multi-axial perfectly matched layer
finite element
anisotropic elastic media
irregular free surface
References
  1. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. W.H. Freeman & Co., San
  2. Francisco.
  3. Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D.A. and
  4. Fichtner, A., 2019. Modular and flexible spectral-element waveform modelling in
  5. two and three dimensions. Geophys. J. Internat., 216: 1675-1692.
  6. Archer, G.C. and Whalen, T.M., 2005. Development of rotationally consistent diagonal
  7. mass matrices for plate and beam elements. Comput. Meth. Appl. Mechan.
  8. Engineer., 194: 675-689.
  9. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F., O'Hallaron, D.R., Shewchuk, J.R. and
  10. Xu, J., 1998. Large-scale simulation of elastic wave propagation in heterogeneous
  11. media on parallel computers. Comput. Meth. App]. Mechan. Engineer., 152: 85-102.
  12. Bérenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic
  13. waves. J. Computat. Phys., 114: 185-200.
  14. Bohlen, T. and Saenger, E.H., 2006. Accuracy of heterogeneous staggered-grid
  15. finite-difference modeling of Rayleigh waves. Geophysics, 71(4), T109-T115.
  16. Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. A nonreflecting boundary
  17. condition for discrete acoustic and elastic wave equations. Geophysics, 50: 705-708.
  18. Chew, W.C. and Liu, Q.H., 1996. Perfectly matched layers for elastodynamics: a new
  19. absorbing boundary condition. J. Computat. Acoust., 4: 341-359.
  20. Chew, W.C. and Weedon, W.H., 1994. A 3D perfectly matched medium from modified
  21. Maxwell's equations with stretched coordinates. Microw. Optic. Technol. Lett., 7:
  22. 599-604.
  23. Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbing layer
  24. model to the linear elastodynamic problem in anisotropic heterogeneous
  25. media. Geophysics, 66: 294-307.
  26. Festa, G. and Vilotte, J.P., 2005. The Newmark scheme as velocity-stress
  27. time-staggering: an efficient PML implementation for spectral element simulations
  28. of elastodynamics. Geophys. J. Internat., 161: 789-812.
  29. Giraldo, F.X. and Taylor, M.A., 2006. A diagonal-mass-matrix triangular-spectral-
  30. element method based on cubature points. J. Engineer. Mathemat., 56: 307-322.
  31. Hesthaven, J.S., 1998. On the analysis and construction of perfectly matched layers for
  32. the linearized Euler equations. J. Computat. Phys., 142: 129-147.
  33. Hesthaven, J.S. and Teng, C.H., 2000. Stable spectral methods on tetrahedral
  34. elements. SIAM J. Sci. Comput., 21: 2352-2380.
  35. Higdon, R.L., 1992. Absorbing boundary conditions for acoustic and elastic waves in
  36. stratified media. J. Computat. Phys., 101: 386-418.
  37. Kane, C., Marsden, J.E., Ortiz, M. and West, M., 2000. Variational integrators and the
  38. Newmark algorithm for conservative and dissipative mechanical systems. Internat. J.
  39. Numer. Meth. Engineer., 49: 1295-1325.
  40. Komatitsch, D., Erlebacher, G., Gdddeke, D. and Michéa, D., 2010. High-order
  41. finite-element seismic wave propagation modeling with MPI on a large GPU
  42. cluster. J. Computat. Phys., 229: 7692-7714.
  43. Komatitsch, D. and Martin, R., 2007. An unsplit convolutional perfectly matched layer
  44. improved at grazing incidence for the seismic wave equation. Geophysics, 72(5):
  45. SM155-SM167.
  46. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
  47. three-dimensional seismic wave propagation. Geophys. J. Internat., 139: 806-822.
  48. Komatitsch, D., Barnes, C. and Tromp, J., 2000. Wave propagation near a fluid-solid
  49. interface: A spectral-element approach. Geophysics, 65: 623-631.
  50. Komatitsch, D. and Tromp, J., 2003. A perfectly matched layer absorbing boundary
  51. condition for the second-order seismic wave equation. Geophys. J. Internat., 154:
  52. 146-153.
  53. Krysl, P. and Endres, L., 2005. Explicit Newmark/Verlet algorithm for time integration
  54. of the rotational dynamics of rigid bodies. Internat. J. Numer. Meth. Engineer., 62:
  55. 2154-2177.
  56. Kuzuoglu, M. and Mittra, R., 1996. Frequency dependence of the constitutive parameters
  57. of causal perfectly matched anisotropic absorbers. IEEE Microw. Guided Wave
  58. Lett., 6: 447-449.
  59. Lan, H., Chen, J., Zhang, Z., Liu, Y., Zhao, J. and Shi, R., 2016.. Application of a
  60. perfectly matched layer in seismic wavefield simulation with an irregular free
  61. surface. Geophys. Prosp., 64: 112-128.
  62. Lan, H. and Zhang, Z., 2011. Three-dimensional wave-field simulation in heterogeneous
  63. transversely isotropic medium with irregular free surface. Bull. Seismol. Soc.
  64. Am., 101: 1354-1370.
  65. Li, Y. and Bou Matar, O., 2010. Convolutional perfectly matched layer for elastic
  66. second-order wave equation. J. Acoust. Soc. Am., 127: 1318-1327.
  67. Liu, S., Li, X., Wang, W. and Liu, Y., 2014a. A mixed-grid finite element method with
  68. PML absorbing boundary conditions for seismic wave modelling. J. Geophys.
  69. Engineer., 11: 055009.
  70. Liu, Y., Teng, J., Lan, H., Si, X., and Ma, X., 2014b. A comparative study of finite
  71. element and spectral element methods in seismic — wavefield
  72. modeling. Geophysics, 79(2): T91-T104.
  73. Lysmer, J. and Drake, L.A., 1972. A finite element method for seismology. Methods in
  74. computational physics, 11, 181-216.
  75. Marfurt, K.J., 1984. Accuracy of finite-difference and finite-element modeling of the
  76. scalar and elastic wave equations. Geophysics, 49: 533-549.
  77. Meng, W. and Fu, L.Y., 2017. Seismic wavefield simulation by a modified finite element
  78. method with a perfectly matched layer absorbing boundary. J. Geophys.
  79. Engineer., 14: 852-864.
  80. Meza-Fajardo, K.C. and Papageorgiou, A.S., 2008. A nonconvolutional, split-field,
  81. perfectly matched layer for wave propagation in isotropic and anisotropic elastic
  82. media: Stability analysis. Bull. Seismol. Soc. Am., 98: 1811-1836.
  83. Meza-Fajardo, K.C. and Papageorgiou, A.S., 2010. On the stability of a
  84. non-convolutional perfectly matched layer for isotropic elastic media. Soil Dynam.
  85. Earthq. Engineer., 30(3): 68-81.
  86. Meza-Fajardo, K.C. and Papageorgiou, A.S., 2012. Study of the accuracy of the
  87. multiaxial perfectly matched layer for the elastic-wave equation. Bull. Seismol. Soc.
  88. Am., 102: 2458-2467.
  89. Nataf, F., 2005. New constructions of perfectly matched layers for the linearized Euler
  90. equations. Compt. Rend. Mathemat., 340: 775-778.
  91. Newmark, N.M., 1959. A Method of Computation for Structural Dynamics. American
  92. Society of Civil Engineers, Reston, VA.
  93. Nissen-Meyer, T., Fournier, A. and Dahlen, F.A., 2007. A two - dimensional spectral -
  94. element method for computing spherical-earth seismograms - I. Moment - tensor
  95. source. Geophys. J. Internat., 168: 1067-1092.
  96. Padovani, E., Priolo, E. and Seriani, G., 1994. Low and high order finite element method:
  97. experience in seismic modeling. J. Computat. Acoust., 2: 371-422.
  98. Peng, C. and Tokséz, M.N., 1995. An optimal absorbing boundary condition for elastic
  99. wave modeling. Geophysics, 60: 296-301.
  100. Ping, P., Zhang, Y. and Xu, Y., 2014. A multiaxial perfectly matched layer (M-PML) for
  101. the long-time simulation of elastic wave propagation in the second-order equations. J.
  102. Appl. Geophys., 101: 124-135.
  103. Matzen, R., 2011. An efficient finite element time-domain formulation for the elastic
  104. second-order wave equation: A non-split complex frequency shifted convolutional
  105. PML. Internat. J. Numer. Meth. Engineer., 88: 951-973.
  106. Richter, G.R., 1994. An explicit finite element method for the wave equation. Appl.
  107. Numer. Mathemat., 16: 65-80.
  108. Sochacki, J., Kubichek, R., George, J., Fletcher, W.R. and Smithson, S., 1987.
  109. Absorbing boundary conditions and surface waves. Geophysics, 52: 60-71.
  110. Stacey, R., 1988. Improved transparent boundary formulations for the elastic-wave
  111. equation. Bull. Seismol. Soc. Am., 78: 2089-2097.
  112. Teixeira, F.L. and Chew, W.C., 2000. Complex space approach to perfectly matched
  113. layers: a review and some new developments. Internat. J. Numer. Modell.: Electron.
  114. Netw., Devic. Fields, 13: 441-455.
  115. Thomsen, L. , 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  116. West, M., Kane, C., Marsden, J.E. and Ortiz, M., 2000. Variational integrators, the
  117. newmark scheme, and dissipative systems. In Equadiff 99 (In 2 Volumes):
  118. 1009-1011.
  119. Wu, S.R., 2006. Lumped mass matrix in explicit finite element method for transient
  120. dynamics of elasticity. Comput. Meth. Appl. Mechan. Engineer., 195(44-47):
  121. 5983-5994.
  122. Zeng, C., Xia, J., Miller, R.D. and Tsoflias, G.P., 2011. Application of the multiaxial
  123. perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh
  124. waves. Geophysics, 76(3): T43-T52.
  125. Zhao, J.G. and Shi, R.Q., 2013. Perfectly matched layer-absorbing boundary condition
  126. for finite-element time-domain modeling of elastic wave equations. Appl.
  127. Geophys., 10: 323-336.
  128. Zhou, B., Greenhalgh, S., Liu, X., Bouzidi, Y., Riahi, M.K. and Al-Khaleel, M., 2019.
  129. Failures of the perfectly-matched layer method in frequency-domain seismic wave
  130. modelling in elastic anisotropic media. Expanded Abstr., 89th Ann. Internat. SEG
  131. Mtg., San Antonio: 3750-3754.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing